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This supplementary document contains the following: results for generalized loss func-

tions (Section A); algorithms for out-of-sample approximations (Section B.1) and Gibbs

sampling (Section B.2); additional results for the simulations (Section C) and physical ac-

tivity data (Section D); and proofs of main results in the paper (Section E).

A Generalized loss functions

Although the flexibility in specifying h is undoubtedly a primary feature of the proposed

framework, certain choices of h, such as binary functionals h(ỹ) ∈ {0, 1}, are incompatible

with squared error loss. Generalized loss functions must be designed with care to maintain

the core attributes of the proposed approach: computational speed, ease of implementation,

and interpretability. We achieve these goals by replacing the squared error loss with the
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negative log-likelihood of an exponential family distribution, or the deviance loss :

LEF0 {h(ỹ), g(x̃; δ)} := F0{g(x̃; δ)} − T0{h(ỹ)} −
p∑
j=1

Fj{g(x̃; δ)}Tj{h(ỹ)},

where {Fj)}pj=1 are the natural parameters and {Tj}pj=1 are the sufficient statistics, all of

which have known forms for a given distribution in the exponential family.

Optimal point predictions are obtained again by minimizing the posterior predictive

expected loss under the Bayesian model M:

δ̂A := arg min
δ

E[ỹ|y]LEF0 {h(ỹ), g(x̃; δ)}.

Key simplifications are available:

Theorem A.1. When E[ỹ|y]|T0{h(ỹ)}| <∞, the optimal point prediction parameters under

the deviance loss LEF0 are

δ̂A = arg min
δ

[
F0{g(x̃; δ)} −

p∑
j=1

Fj{g(x̃; δ)}Tj
]
,

where Tj := E[ỹ|y]Tj{h(ỹ)} is the predictive expectation of the sufficient statistics j = 1, . . . , p

under M.

An optimal δ̂A requires only estimation of Tj, such as Tj ≈ S−1
∑S

s=1 Tj{h(ỹs)} for

ỹs ∼ pM(ỹ|y), and minimization of the resulting deviance loss. Crucially, the requisite

optimization problem retains the form of the exponential family log-likelihood, and therefore

is efficiently solvable using existing software for many choices of g. Extensions for multiple

covariates {x̃i}ñi=1 and penalized loss functions LEFλ := LEF0 + λP are straightforward.

Despite the presence of the exponential family of distributions, we employ the deviance

loss LEF0 only for point prediction of h(ỹ). The loss function is chosen to reflect the nature
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of h(ỹ), which may be binary, count-valued, nonnegative, or restricted to an interval—each

of which features a distributional analog in the exponential family. However, the deviance

loss does not impose additional assumptions on the distribution of h(ỹ): the predictive

distribution is inherited from M, while Theorem A.1 produces optimal point prediction

parameters for a parametrized action A based on this loss function.

This approach is distinct from distributional approximations of M based on KL diver-

gence (Goutis and Robert, 1998; Nott and Leng, 2010; Tran et al., 2012; Piironen et al.,

2020). These methods approximate pM(y|θ) with a distribution pM(y|δ̂KL) such that

δ̂KL = arg minδDKL {pM(y|θ), pM(y|δ)}, usually for variable selection. Those approxima-

tions are derived for the likelihood pM(y|θ) rather than the predictive distribution pM(ỹ|y)

and do not target any particular functional h. Consequently, the resulting global approxima-

tions may be unnecessarily complex or suboptimal locally for h(ỹ). Indeed, Huggins et al.

(2018) show that approximations deemed accurate by KL divergence can produce inaccurate

point estimates of important posterior quantities—which may include h(ỹ).

Example A.1 (Classification and cross-entropy). Consider a binary functional h(ỹ) ∈

{0, 1}, such as a discretized contrast for multivariate data, h(ỹ) = I{ỹ1 > ỹ2}, or ex-

ceedance of a threshold t∗ for functional data, h(ỹ) = I{∃τ ∈ T : ỹ(τ) > t∗}. The

Bernoulli deviance for the canonical (logistic) link function is given by LEF0 with p = 1,

F0{g(x̃; δ)} = log[1 + exp{g(x̃; δ)}], T0 = 0, F1{g(x̃; δ)} = g(x̃; δ), and T1{h(ỹ)} = h(ỹ).

In this case, the deviance loss is the cross-entropy, which is a popular metric for classifica-

tion. The predictive expectation T1 = E[ỹ|y]T1{h(ỹ)} = E[ỹ|y]h(ỹ) required by Theorem A.1

is simply the posterior predictive probability of {h(ỹ) = 1} under model M. Interestingly,

T1 ∈ [0, 1] is on a continuous scale, and may contain more information than the binary

empirical functional h(y) ∈ {0, 1}.
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B Algorithms

B.1 SIR for out-of-sample predictive evaluation

The out-of-sample predictive metrics require computation of several quantities. For each

data split k = 1, . . . , K, the out-of-sample empirical and predictive losses are

LoutA (k) :=
1

|Ik|
∑
i∈Ik

L
{
h(yi), g(xi; δ̂

−Ik
A )

}
, L̃outA (k) :=

1

|Ik|
∑
i∈Ik

L
{
h(ỹ−Iki ), g(xi; δ̂

−Ik
A )

}
(B.1)

respectively, where δ̂−IkA is estimated only using the training data y−Ik := {yi}i 6∈Ik ,

δ̂−IkA := arg min
δ

E[ỹ|y−Ik ]L̄λ
[
{h(ỹi), g(x̃i; δ)}i 6∈Ik

]
(B.2)

and similarly ỹ−Iki ∼ pM(ỹi|y−Ik) is the predictive variate at xi conditional only on the

training data. Evaluation of A is based on the averages of (B.1) across all data splits:

LoutA :=
1

K

K∑
k=1

LoutA (k), L̃outA :=
1

K

K∑
k=1

L̃outA (k). (B.3)

Under squared error loss, (B.2) simplifies as follows:

δ̂−IkA = arg min
δ

{
(n− |Ik|)−1

∑
j 6∈Ik

∥∥h̄−Ikj − g(xj; δ)
∥∥2
2

+ λP(δ)
}

(B.4)

where h̄−Ikj = E[ỹj |y−Ik ]h(ỹj) is the out-of-sample point prediction at xj. Similar simplifica-

tions are available for deviance loss.

The out-of-sample predictive metrics require estimates of the out-of-sample point pre-

diction h̄−Ikj , a solution to the penalized least squares problem (B.4), and out-of-sample

predictive draws ỹ−Iki ∼ pM(ỹi|y−Ik). We obtain these quantities without Bayesian model

re-fitting using the sampling-importance resampling (SIR) algorithm in Algorithm 1. The
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samples {ỹs̃i }S̃s̃=s̃1 constitute draws from pM(ỹi|y−Ik) for each i ∈ Ik; we use S̃ = bS/2c

SIR samples. These samples, along with δ̂−IkA , are sufficient for computing the key terms

in predictive evaluation: the out-of-sample predictive loss L̃outA , the predictive discrepancies

D̃out
A,A′ , and the set of acceptable models Λη,ε.

Algorithm 1: Out-of-sample predictive loss.

1. Obtain posterior samples {θs}Ss=1 ∼ pM(θ|y);

2. For each training set k = 1, . . . , K:

(a) Compute logwsk
c
= − log pM(yIk |θs) = −

∑
i∈Ik log pM(yi|θs) (up to a constant);

(b) Sample {s̃1, . . . , s̃S̃} without replacement from {1, . . . , S} with probability
weights {w1

k, . . . , w
S
k };

(c) Sample ỹs̃i ∼ pM(ỹi|θs̃) for s̃ = s̃1, . . . , s̃S̃ and i = 1, . . . , n;

(d) Compute h̄−Ikj ≈ S̃−1
∑S̃

s̃=s̃1
h(ỹs̃j ) for j 6∈ Ik;

(e) Compute δ̂−IkA by solving (B.4) for each A ∈ A;

(f) Compute LoutA (k) and {L̃out,s̃A (k)}S̃s̃=s̃1 in (B.1) using δ̂−IkA and {h(ỹs̃i )}S̃s̃=s̃1 ;

3. Compute LoutA and {L̃out,s̃A }S̃s̃=s̃1 in (B.3) using LoutA (k) and {L̃out,s̃A (k)}S̃s̃=s̃1 .

Algorithm 1 allows for recycled computations: steps 1–2(c) are shared across all func-

tionals h, parametrized actions A, and loss functions L. As a result, these computations

are a one-time cost for all predictive evaluations under M. Step 2(d) depends only on the

functional h, while steps 2(e)–3 depend on h, A, and L. The solutions δ̂A and the Bayes

estimators h̄i from the full dataset are not needed for predictive evaluation.

B.2 Gibbs sampling for the STAR functional regression model

We design a Gibbs sampling algorithm for the proposed count-valued functional regression

model based on the simultaneous transformation and rounding (STAR) framework of Kowal

and Canale (2020). For each individual, we aggregate physical activity (PA) data across all
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available days (at least three and at most seven days per subject) in five-minute bins. Let

yi,j and ytoti,j and denote the average and total PA, respectively, for subject i at time τj, where

i = 1, . . . , n = 1012 and j = 1, . . . ,m = 288. Total PA is count-valued and will serve as the

input for the STAR model, while all subsequent functionals and predictive distributions use

average PA. Model M is the following:

ytoti,j = round(y∗i,j), z∗i,j = transform(y∗i,j) (B.5)

z∗i,j = b′(τj)θi + σεεi, εi
iid∼ tν(0, 1) (B.6)

θi,` = x′iα` + σγiγi,`, γi,`
iid∼ N(0, 1) (B.7)

with the priors α`,j
indep∼ N(0, σ2

αj
) and σ−2ε , σ−2γi , σ

−2
αj

iid∼ Gamma(0.01, 0.01). In (B.5), round

maps the latent continuous data y∗i,j to {0, 1, . . . ,∞}, while transform maps y∗i,j to R for

continuous data modeling. We use round(t) = btc for t > 0 and round(t) = 0 for t ≤ 0, so

ytoti,j = 0 whenever y∗i,j < 0. Within the Box-Cox family, we find that transform(t) = 2(
√
t−

1) is adequate for the predictive functionals of interest. The functional regression model is

given in (B.6) and (B.7): b is a vector of basis functions with basis coefficients θi for subject

i and α` is the vector of regression coefficients for each basis coefficient. We use a spline basis

with the reparametrization of Scheipl et al. (2012), which simultaneously orthogonalizes b

and diagonalizes the prior variance of the basis coefficients. This diagonalization justifies

the assumption of independence across basis coefficients in (B.7). Heavy-tailed innovations

(ν = 3) are introduced to model large spikes in PA. Within the Gibbs sampler, we use the

parameter expansion εi|ξεi ∼ N(0, ξ−1εi ) with ξεi
iid∼ Gamma(ν/2, ν/2).

We introduce the following notation. Let B denote the m×L basis matrix with columns

B′` = (b`(τ1), . . . , b`(τm)) for ` = 1, . . . , L. Since B′B is diagonal by orthogonalization, let

diag`(B
′B) denote the `th diagonal element. Let z∗i = (z∗i,1, . . . ,z

∗
i,m)′, X = (x1, . . . ,xn)′,

θ` = (θ1,`, . . . , θn,`)
′, and ni the number of binned observations for subject i (i.e., the number
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of days of data for subject i times 5 minutes per bin).

The Gibbs sampling algorithm is in Algorithm 2. Following the sampling of z∗i,j, the

remaining steps are mostly standard for functional regression. The primary differences are

(i) the sampler for the basis coefficients θi,` uses the orthogonality of the basis matrix B to

improve computational efficiency and (ii) the posterior predictive draws of ỹi,j are generated

according to STAR. Predictive functionals are computed by evaluating h(ỹi) for each draw

ỹi = (ỹi,1, . . . , ỹi,m)′ from the posterior predictive distribution of the (average) intraday PA.

Algorithm 2: Gibbs sampler for count-valued functional regression.

1. Sample [z∗i,j|−]
indep∼ N

(
b′(τj)θi, σ

2
ε/ξεi

)
truncated to

[transform(ytoti,j ), transform(ytoti,j + 1)) for i = 1, . . . , n and j = 1, . . . ,m;

2. Sample [θi,`|−]
indep∼ N

(
Q−1θi,``θi,` , Q

−1
θi,`

)
where Qθi,` = diag`(B

′B)ξεi/σ
2
ε + 1/σ2

γi
and

`θi,` = B′`z
∗
i ξεi/σ

2
ε + x′iα`/σ

2
γi

for i = 1, . . . , n and ` = 1, . . . , L;

3. Sample [α`|−]
indep∼ N

(
Q−1α`

`α`
,Q−1α`

)
where

Qα`
= X ′diag({σ−2γi }

n
i=1)X + diag({σ−2αj

}pj=1) and `α`
= X ′diag({σ−2γi }

n
i=1)θ` for

` = 1, . . . , L;

4. Sample [σ−2ε |−] ∼ Gamma
(
nm/2,

∑n
i=1

∑m
j=1 ξεi{z∗i,j − b′(τj)θi}2/2

)
;

5. Sample [ξεi |−]
indep∼ Gamma

(
m/2 + ν/2, σ−2ε

∑m
j=1{z∗i,j − b′(τj)θi}2/2 + ν/2

)
for

i = 1, . . . , n;

6. Sample [σ−2αj
|−]

indep∼ Gamma
(
L/2 + 0.01,

∑L
`=1 α

2
`,j/2 + 0.01

)
for j = 1, . . . , p;

7. Sample [σ−2γi |−]
indep∼ Gamma

(
L/2 + 0.01,

∑L
`=1(θi,`−x′iα`)2/2 + 0.01

)
for i = 1, . . . , n;

8. Compute ỹi,j = ỹtoti,j /ni where ỹtoti,j = round{transform−1(z̃i,j)} and

[z̃i,j|−]
indep∼ N

(
b′(τj)θi, σ

2
ε/ξεi

)
for i = 1, . . . , n and j = 1, . . . ,m;
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C Simulation study

C.1 Additional simulation results

We evaluate targeted point predictions of h, estimates of the linear coefficients, and vari-

able selection properties using simulated data. The main paper reports results for m =

200, p = 50, and n ∈ {100, 500}. Here, we consider four variations: a smaller sam-

ple size (n = 75), more predictors than functional observations (p > n), sensitivity to

ε ∈ {0.05, 0.10, 0.20, 0.50}, and a validation dataset where the distribution of the design

points x̃ differs from that of the training data.

An example of the simulated data is presented in Figure C.1. The functions are piecewise

linear and concave with a single breakpoint—the argmax—which is determined by a sparse

linear model. Gaussian noise was added to produce the functional data yi. Note that we

restrict the functional h(Y ∗i ) = x′iβ
∗ to the interval [0.2, 0.8] by shifting and scaling the

(nonzero) coefficients as follows: set β∗0 ← min{x′iβ∗}; shift β∗j ← β∗j × 0.6/range{x′iβ∗}

for j = 0, 1, . . . , p; and reset β∗0 ← β∗0 + 0.2. Figure C.1 demonstrates that the empirical

argmax values h(yi) are sensitive to outlying data points, while the Bayesian model M

estimates h̄ = E[ỹ|y]h(ỹ) are more robust. Most interesting, the proposed point predictions

further improve uponM and more closely match the true argmax values. These results are

confirmed more rigorously in the simulation study in the main paper.

C.2 Marginal variable selection

We present the marginal variable selection results form = 200, p = 50, and n ∈ {75, 100, 500}

in Table C.1. Specifically, we report true positive and true negative rates for each selection

method averaged across the p predictors and the 100 simulations. Notably, proposed(out)

offers the best marginal variable selection properties, with large TPRs and TNRs in all

settings. By comparison, projpred reports lower TPRs while proposed(in) suffers from
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Figure C.1: True functions (solid black line) and functional data observations yi (gray x-marks)
for two curves. Vertical lines denote the true argmax functional (dark green), the proposed point
prediction (dotted black), the model M prediction (dashed blue), and the empirical value h(yi)
(dot-dashed red). The proposed predictions more closely match the true values.

lower TNRs. These results illustrate the gains from the parametrized decision analysis under

a Bayesian model M—rather than variable selection based on the empirical functionals

{xi, h(yi)}ni=1—and highlight the crucial distinction between in-sample and out-of-sample

variable selection.

adaptive lasso projpred proposed(in) proposed(out)

n = 75
TPR 0.89 0.73 0.99 0.96
TNR 0.90 0.94 0.46 0.94

n = 100
TPR 0.95 0.82 1.00 0.99
TNR 0.97 0.96 0.48 0.98

n = 500
TPR 1.00 1.00 1.00 1.00
TNR 1.00 0.99 0.46 0.99

Table C.1: True positive rates (TPR) and true negative rates (TNR) for the synthetic data (p = 50,
m = 200). The parametric action with out-of-sample selection offers the best marginal variable
selection properties, especially for smaller sample sizes.

C.3 Smaller sample size

In Figure C.2, we present the prediction and estimation comparisons for the case of n = 75,

m = 200, and p = 50. The results are similar to those for n = 100: clear improvements
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in targeted prediction are obtained by (i) fitting to h(ỹi) (via h̄i) rather than h(yi), (ii)

including covariate information, (iii) incorporating penalization or variable selection, and

(iv) selecting the complexity based on out-of-sample evaluations.

h(y)

h_bar

adaptive lasso

projpred

proposed(full)

proposed(in)

proposed(out)

0.02 0.04 0.06 0.08 0.10 0.12

Root mean squared errors for h(Y*), n = 75

adaptive lasso

projpred

proposed(full)

proposed(in)

proposed(out)

0.01 0.02 0.03 0.04 0.05 0.06

Root mean squared errors for coefficients, n = 75

Figure C.2: RMSEs for the true functionals h(Y ∗) (left) and the true regression coefficients β∗

(right) for n = 75 across 100 simulated datasets. Non-overlapping notches indicate significant
differences between medians. The proposed point predictions and estimates using out-of-sample
selection of λ are most accurate.

C.4 More covariates than observations: p > n

For the case of p > n, we consider two scenarios, both with m = 200: (n = 200, p = 500)

and (n = 100, p = 200). The remaining simulation specifications are unchanged.

The adaptive penalization in the proposed approach requires modification due to p > n.

Recall that the penalty P(δ,θ) =
∑p

j=1 ωj|δj|, where the weights ωj derive from model M.

Previously, we used ω = |δ̃0|−1, where δ̃0 is the `2-projection of the predictive variables

{h(ỹi)}ni=1 onto (x1, . . . ,xn)′, which inherits a predictive distribution under M. To adjust

for p > n, we instead use the weights ω = |δ̃R|−1, where δ̃R is the ridge regression estima-

tor on {xi, h(ỹi)}ni=1. The ridge tuning parameter is obtained by fitting a ridge regression

to {xi, h̄i}ni=1 and selecting the parameter that minimizes cross-validated mean squared er-

ror. As a result, the same tuning parameter is used across all posterior predictive samples

of {ỹi}ni=1. As before, we integrate the penalty over the posterior predictive distribution,
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P(δ) := E[ỹ|y]P(δ,θ) =
∑p

j=1 ω̂j|δj| for ω̂ = E[ỹ|y](|δ̃R|−1), which is estimable using poste-

rior predictive samples. The weights for the adaptive lasso fit to the empirical functionals

{xi, h(yi)}ni=1 are similarly modified using a ridge-based adjustment.

Point predictions of h(Y ∗i ) and estimates of β∗ are evaluated using root mean squared

errors (RMSEs) in Figure C.3. Most notably, the parametrized linear action with out-of-

sample variable selection (proposed(out)) is consistently the most accurate for prediction

and estimation. Perhaps most interesting, the (unparametrized) Bayes estimator h̄ outper-

forms the empirical functional h(y) as well as the adaptive lasso and the parametrized linear

action without selection (proposed(full)) for point prediction. Clearly, the parametrized

action offers the greatest advantages when the complexity penalty is included. Although

in-sample and out-of-sample selection provide equally accurate point prediction, the out-

of-sample selection improves the estimation of the linear coefficients. Note that we have

omitted projpred due to extremely slow computation times for the Bayesian linear model

sampling algorithm (stan glm) in the rstanarm package under these choices of n and p.

C.5 Sensitivity to ε

To assess sensitivity to the probability level ε, which defines the acceptable predictor set

and therefore the smallest acceptable predictor, we evaluate the prediction and estimation

accuracy for sparse linear actions with ε ∈ {0.05, 0.10, 0.20, 0.50}. We consider the case

of n = 100, m = 200, and p = 50 and present the results in Figure C.4. As expected,

the prediction and estimation accuracy improves as ε increases, which pulls the simplest

acceptable predictor toward the best predictor Amin. The smallest value of ε = 0.01 sacrifices

predictive ability for sparsity. Notably, the TPRs are comparable in all cases—0.98 for ε =

0.01 and 0.99 otherwise—but the TNRs decline from 0.99 (ε = 0.01) to 0.93 (ε = 0.50). These

results affirm our choice of ε = 0.10, which simultaneously produces excellent predictions,

estimations, and variable selection.

11



h(y)

h_bar

adaptive lasso

proposed(full)

proposed(in)

proposed(out)

0.04 0.06 0.08 0.10 0.12

Root mean squared errors for h(Y*),
 n = 100, p = 200

adaptive lasso

proposed(full)

proposed(in)

proposed(out)

0.010 0.015 0.020 0.025

Root mean squared errors for coefficients,
 n = 100, p = 200

h(y)

h_bar

adaptive lasso

proposed(full)

proposed(in)

proposed(out)

0.05 0.06 0.07 0.08 0.09 0.10 0.11

Root mean squared errors for h(Y*),
 n = 200, p = 500

adaptive lasso

proposed(full)

proposed(in)

proposed(out)

0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014

Root mean squared errors for coefficients,
 n = 200, p = 500

Figure C.3: RMSEs for the true functionals h(Y ∗) (left) and the true regression coefficients β∗

(right) for n = 100, p = 200 (top) and n = 200, p = 500 (bottom) across 100 simulated datasets.
Non-overlapping notches indicate significant differences between medians. The parametrized actions
with out-of-sample selection are most accurate for prediction and estimation.

C.6 Differential training and testing covariates

We evaluate parameterized actions for targeted prediction for the scenario in which the

distribution of the covariates used for training differs substantially from the distribution

of covariates used for testing. For the training data, the covariates {xi,j} are drawn from

marginal standard normal distributions with Cor(xi,j, xi,j′) = (0.75)|j−j
′|, and half of these

covariates are binarized: xi,j ← I{xi,j ≥ 0}. For the testing data, we simulate covari-

ates {x∗i,j} from marginal standard t3 distributions with the same correlation structure,

Cor(x∗i,j, x
∗
i,j′) = (0.75)|j−j

′|, but a different binarized threshold for the discrete variables:

x∗i,j ← I{x∗i,j > 0.5}. Compared to the training covariates, the testing covariates feature
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Figure C.4: RMSEs for the true functionals h(Y ∗) (left) and the true regression coefficients β∗

(right) for ε = 0.01 (top), ε = 0.20 (middle), and ε = 0.50 (bottom) with n = 100, m = 200,
and p = 50 across 100 simulated datasets. Non-overlapping notches indicate significant differences
between medians. The parametrized actions with out-of-sample selection are most accurate for
prediction and estimation, with better results for larger ε.

continuous variables with heavier-tailed marginal distributions and discrete variables with a

distorted allocation of zeros and ones. In both the training and testing datasets, the contin-

uous covariates are centered and scaled to sample standard deviation 0.5. Given the testing
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covariates {x∗i,j}, we simulate the latent testing functions {Y ∗test,i(τ) : τ ∈ [0, 1]} as in the

original simulation study.

Point predictions of h(Y ∗test,i) are evaluated using root mean squared errors in Figure C.5.

We present results for m = 200 and p = 50 with n ∈ {75, 500}; the results for n = 100

are similar to those for n = 75 and are omitted. The parametrized linear actions with out-

of-sample variable selection (proposed(out)) produce the most accurate point predictions,

with substantial gains arriving for the smaller sample size. Notably, the (unparametrized)

Bayes estimator h̄—which is nominally optimal under squared error loss in classical decision

analysis— underperforms relative to the parameterized actions. In addition, this estimator is

the slowest to compute: we estimate h̄i by sampling from the posterior predictive distribution

at each testing point x∗i , applying h to each simulated function, and computing the MCMC

sample mean across draws. By comparison, point predictions under the linear actions are

simply computed as δ̂′Ax
∗
i .

h(y)

h_bar

adaptive lasso

projpred

proposed(full)

proposed(in)

proposed(out)

0.05 0.10 0.15

Root mean squared errors for h(Y_test*), n = 75

h(y)

h_bar

adaptive lasso

projpred

proposed(full)

proposed(in)

proposed(out)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Root mean squared errors for h(Y_test*), n = 500

Figure C.5: RMSEs for the true functionals h(Y ∗test) on the testing data with distinctly dis-
tributed covariates {x∗i,j} for n = 75 (left) and n = 500 (right) across 100 simulated datasets.
Non-overlapping notches indicate significant differences between medians. The proposed point
predictions and estimates using out-of-sample selection are most accurate.
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D Physical activity data analysis

D.1 Additional results: physical activity data

We expand upon our analysis of the National Health and Nutrition Examination Survey

(NHANES) physical activity (PA) data. Targeted predictions for each functional (see the

main paper) were constructed using a linear action g(x̃; δ) = x̃′δ with an adaptive `1-

penalty. The set of parametrized actions A is given by the path of λ values computed

using glmnet in R (Friedman et al., 2010): we highlight the simplest acceptable model

λ = λ0,0.1 (proposed(out)) and the full model λ = 0 (proposed(full)). For comparison,

we fit an adaptive lasso to {xi, h(yi)}ni=1 for each h. Squared error loss is used for all but

zeros(1am-5am) which uses cross-entropy. Here, we present posterior predictive diagnostics,

additional results for vigorous PA, and an expanded set of covariates based on quadratic and

interaction effects.

D.2 Posterior predictive diagnostics

Posterior predictive diagnostics for the functionals of interest are provided in Figure D.1,

which plots the sample (kernel) density estimates for the empirical functionals {h(yi)}ni=1

and the predictive functionals {h(ỹi)}ni=1 for 500 draws from the posterior predictive distri-

bution under model M. There is substantial overlap between the densities of the empirical

and predictive functionals, which suggests adequacy of M for these functionals. These en-

couraging results are insensitive to ν, but alternative choices of transform or b (such as

wavelets) produce inferior results.

The posterior predictive diagnostics for the binary functional zeros(1am-5am) are in

Figure D.2. ModelM is successful in distinguishing between the classes of zeros(1am-5am).
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Figure D.1: Kernel density estimates for the empirical functionals {h(yi)}ni=1 (black line) and the
predictive functionals {h(ỹi)}ni=1 (gray lines) for 500 predictive samples. The model M in (B.5)-
(B.7) appears to be adequate for these functionals, with some difficulty for argmax around the
mode.
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Posterior predictive diagnostics: 
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h(y)

h

Figure D.2: Posterior predictive diagnostics: the binary empirical functionals {h(yi)}ni=1 and the
predictive expected functionals {h̄i}ni=1. The Bayesian model M appears adequate.

D.3 Out-of-sample evaluations for vigorous PA

Due to the similarity among the vigorous PA measures—avg, sd, and max—the main paper

only presented results for max. In Figure D.3, we present the predictive and empirical loss

relative to the best predictor Amin for all of the vigorous PA measures. Clearly, the results

are similar, and indeed the selected variables are identical up to the smallest acceptable
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linear predictor of size 10.
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Figure D.3: Approximate out-of-sample squared error loss for sparse linear actions targeted to
vigorous PA. Results are presented for each size as a percent increase in loss relative to Amin. The
predictive expectations (triangles) and 80% intervals (gray bars) are included with the empirical
relative loss for each model size (x-marks) and the adaptive lasso (red lines). The horizontal black
lines denote the choices of η and the vertical lines denote λη,0.1 (solid) and Amin (dashed).

D.4 Targeted prediction with quadratic and interaction effects

We expand the set of covariates by including quadratic effects for age and BMI as well as

pairwise interactions for each of age and BMI with race, gender, the behavioral attributes,

and the self-reported comorbidity factors. The main effects (age and BMI) are included in

all parametrized actions.

The targeted predictions are evaluated using the proposed (approximate) out-of-sample

metrics. For each functional h and linear action size indexed by λ, Figure D.4 presents the

predictive and empirical loss relative to the best model Amin. The predictive expectations

align closely with the empirical values, which suggests that model M is adequate for these

predictive metrics. The parameterized actions including interactions now prefer including

more variables, which suggests that many of these interactions are important for prediction.

In all cases, the smallest acceptable predictor outperforms the adaptive lasso.

The results for the binary functional zeros(1am-5am) are presented in Figure D.5. For

illustration, we include both (approximate) out-of-sample and in-sample versions of the pre-

dictive metrics, and include the linear actions with and without interactions. The distinction
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Figure D.4: Approximate out-of-sample squared error loss for sparse linear models (with inter-
actions) targeted to each functional. Results are presented for each size as a percent increase in
loss relative to Amin. The predictive expectations (triangles) and 80% intervals (gray bars) are
included with the empirical relative loss for each model size (x-marks) and the adaptive lasso (red
lines). The horizontal black lines denote the choices of η and the vertical lines denote λη,0.1 (solid)
and Amin (dashed).

is stark: the in-sample version favors much larger sets of covariates, which are not supported

by the out-of-sample metrics. For the out-of-sample version with interactions, the selected
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variables are race, gender, smoking status, a quadratic age effect, and the interactions age

× cancer and BMI × race (BMI and age are included automatically).
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Figure D.5: Approximate out-of-sample (left) and in-sample (right) cross-entropy loss for sparse
linear models without (top) and with (bottom) interactions targeted to zeros(1am-5am). Results
are presented for each size as a percent increase in loss relative to Amin. The predictive expectations
(triangles) and 80% intervals (gray bars) are included with the empirical relative loss for each model
size (x-marks) and the adaptive lasso (red lines). The horizontal black lines denote the choices of
η and the vertical lines denote λη,0.1 (solid) and Amin (dashed).

D.5 Selected covariates and direction of estimated effects

The selected covariates and direction of estimates effects for each functional are provided

in Table D.1. These results are based on the simplest acceptable predictor described in

the main paper and using the original set of covariates, i.e., excluding interactions and

quadratic effects. There is strong consensus for the selected covariates and the directions
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among avg, tlac, sd, and max, while sedentary consistently features the opposite sign.

Focusing on sedentary for conciseness, we note that BMI, age, smoking, diabetes, coronary

heart disease, and total cholesterol are positively associated with sedentary behavior (i.e.,

less physical activity). These results appear to be reasonable. Since argmax is not accurately

predicted by any of the candidate predictors, the simplest acceptable predictor only selects

one variable.

avg tlac sd sedentary max argmax

BMI - - - + - 0
Age - - - + - 0
Gender: female - - - + - 0
Race: Black - 0 - + - 0
Race: Hispanic + + + - + -
Race: Other 0 + 0 - 0 0
Education: HS 0 0 0 - 0 0
Education: more than HS 0 + 0 0 0 0
Smoker: current - 0 - + - 0
Smoker: former 0 - 0 0 0 0
Diabetes - - - + - 0
Congestive heart failure + 0 0 0 0 0
Coronary heart disease - - - + - 0
HDL Cholesterol + + + - + 0
Total Cholesterol - - 0 + 0 0

Table D.1: Signs of the estimated effects for the selected variables for each functional. Continuous
variables are italicized; the remaining variables are binary. Baselines for the categorical variables
are Race: White, Education: less than high school (HS), and Smoker: never.
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E Proofs

Proof (Theorem 1). The posterior predictive expected loss is

E[ỹ1,...,ỹñ|y]L̄λ
[
{h(ỹi), g(x̃i; δ)}ñi=1

]
= E[ỹ1,...,ỹñ|y]

[
ñ−1

ñ∑
i=1

L0{h(ỹi), g(x̃i; δ)}+ λP(δ)
]

= ñ−1
ñ∑
i=1

E[ỹi|y]L0{h(ỹi), g(x̃i; δ)}+ λP(δ)

= ñ−1
ñ∑
i=1

E[ỹi|y]
∥∥h(ỹi)− g(x̃i; δ)

∥∥2
2

+ λP(δ).

Focusing on one expectation term in the summand, we simplify:

E[ỹi|y]
∥∥h(ỹi)− g(x̃i; δ)

∥∥2
2

= E[ỹi|y]
∥∥{h(ỹi)− h̄i}+ {h̄i − g(x̃i; δ)}

∥∥2
2

= v̂i +
∥∥h̄i − g(x̃i; δ)

∥∥2
2

where h̄i := E[ỹi|y]h(ỹi) and v̂i := E[ỹi|y]
∥∥h(ỹi)− h̄i

∥∥2
2
. Since v̂i < ∞ is a constant that does

not depend on δ, the result follows immediately.

Proof (Corollary 1). From Theorem 1, the optimal action for AB = (g(x̃; δ) = δ(x̃), λ = 0)

is

δ̂AB
= arg min

δ

{
ñ−1

ñ∑
i=1

∥∥h̄i − g(x̃i; δ)
∥∥2
2

+ λP(δ)

}

= arg min
δ

{
ñ−1

ñ∑
i=1

∥∥h̄i − δ(x̃i)∥∥22
}

which can be minimized (to zero) by setting δ(x̃i) = h̄i for each i = 1, . . . , ñ.
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Proof (Corollary 2). When E[ỹi|θ]h(ỹi) = x̃′iθ, the Bayes action is

h̄i = E[ỹi|y]h(ỹi)

= E[θ|y]E[ỹi|θ]h(ỹi)

= x̃′iEθ|yθ.

From Theorem 1, the optimal action for AL = (g(x̃; δ) = x̃′δ, λ = 0) at the observed design

points X̃ = {xi}ni=1 is

δ̂AL
= arg min

δ

{
n−1

n∑
i=1

∥∥h̄i − g(xi; δ)
∥∥2
2

+ λP(δ)

}

= arg min
δ

{
n−1

n∑
i=1

∥∥x′iEθ|yθ − x′iδ∥∥22
}

which can be minimized (to zero) by setting δ̂AL
= Eθ|yθ.

Proof (Lemma 1). First, suppose A ∈ Λη,ε. Then (`,∞) is a (1 − ε) lower interval for

D̃out
A,Amin

. Next, let (`,∞) be a lower (1− ε) interval for D̃out
A,Amin

. If η belongs to the interval,

then η > ` and PM
(
D̃out
A,Amin

< η
)
≥ PM

(
D̃out
A,Amin

< `
)

= ε, which satisfies the criteria of the

acceptable model set Λη,ε.

Proof (Theorem A.1). The posterior predictive expected loss simplifies to

E[ỹ|y]LEF0 {h(ỹ), g(x̃; δ)} = F0{g(x̃; δ)} − E[ỹ|y]T0{h(ỹ)} −
p∑
j=1

Fj{g(x̃; δ)}E[ỹ|y]Tj{h(ỹ)}

by linearity of expectation. Since E[ỹ|y]T0{h(ỹ)} does not depend on δ and E[ỹ|y]|T0{h(ỹ)}| <

∞, the minimizer of the posterior predictive expected loss is invariant to this term. It follows
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that

δ̂A := arg min
δ

E[ỹ|y]LEF0 {h(ỹ), g(x̃; δ)}

= arg min
δ

[
F0{g(x̃; δ)} −

p∑
j=1

Fj{g(x̃; δ)}Tj
]

with Tj := E[ỹ|y]Tj{h(ỹ)}.
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