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Summary

Social and environmental stressors are crucial factors in child development. How-
ever, there exists a multitude of measurable social and environmental factors—the
effects of which may be cumulative, interactive, or null. Using a comprehensive
cohort of children in North Carolina, we study the impact of social and environ-
mental variables on 4th end-of-grade exam scores in reading and mathematics. To
identify the essential factors that predict these educational outcomes, we design new
tools for Bayesian linear variable selection using decision analysis. We extract a
predictive optimal subset of explanatory variables by coupling a loss function with
a novel model-based penalization scheme, which leads to coherent Bayesian deci-
sion analysis and empirically improves variable selection, estimation, and prediction
on simulated data. The Bayesian linear model propagates uncertainty quantifica-
tion to all predictive evaluations, which is important for interpretable and robust
model comparisons. These predictive comparisons are conducted out-of-sample with
a customized approximation algorithm that avoids computationally intensive model
re-fitting. We apply our variable selection techniques to identify the joint collection
of social and environmental stressors—and their interactions—that offer clear and
quantifiable improvements in prediction of reading and mathematics exam scores.
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1 INTRODUCTION

It is widely agreed that health and well-being are determined by multiple forces. Environmental exposures such as air pollution
and lead adversely affect health and cognitive development, and are often elevated in disadvantaged communities. These same
communities may also experience a multitude of social stressors: inadequate access to health care, poor housing, high unemploy-
ment, high crime, high poverty, and racial segregation, among others.1,2 While social and environmental stressor co-exposures
may or may not interact, they almost certainly cumulate. In addition, health and developmental impacts during childhood are
strongly associated with poor outcomes in adults. Thus, understanding the effects of co-exposures to social and environmen-
tal stressors among children is critical to improving the nation’s health. Here, we develop methods to better understand the
relationships among environmental mixtures and social context, as well as their impacts on developmental outcomes.
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Although the evidence is not yet conclusive, a growing body of epidemiological research suggests that pre- and post-natal
exposure to ambient air pollution, including PM2.5, adversely impacts neurological development in children.3 Prenatal PM2.5
exposure specifically has been linked with poorer function across memory and attention domains in children.4 Meanwhile,
there is a plethora of evidence that lead exposure in young children, even at low levels, is associated with intellectual deficits,5
learning and behavioral disorders,6 and lower scores on intelligence and standardized tests.7 The adverse effects of childhood
lead exposure persist into adulthood, affecting intelligence and socioeconomic status.8
Social stressors, often present in the same communities as these adverse environmental exposures, may also affect health and

development. Neighborhood measures of poverty, disadvantage, and deprivation are associated with decrements in cognitive
development in children,9 and a substantial body of evidence links segregation with adverse health outcomes.10 Despite evi-
dence linking neighborhood conditions with health11 and developmental outcomes in children,12 the effects of environmental
exposures such as air pollution and lead are not always evaluated in conjunction with neighborhood conditions.
Our overarching objective is to identify the environmental exposures (e.g., air pollution exposure, lead exposure) and social

stressors (e.g., racial residential segregation, neighborhood deprivation, income status)—as well as their interactions—that pre-
dict child educational outcomes. For this task, we develop new decision tools for Bayesian variable selection. Although shrinkage
and sparsity priors can encode prior beliefs or preferences for sparsity, the prior alone cannot select variables. In particular,
the posterior distribution encapsulates information about variable importance, but a decision about the active or inactive vari-
ables is still required. A natural solution is a two-stage approach: after obtaining the posterior distribution of a Bayesian (linear)
model, we extract sparse linear summaries that are optimized for prediction. From a decision analysis perspective, we pair a
loss function with a novel model-based penalization scheme that enables simultaneous optimization for predictive accuracy and
sparsity. Unlike marginal decision criteria that examine each regression coefficient individually—hard-thresholding,13 poste-
rior inclusion probabilities,14 or posterior credible intervals that exclude zero15—our approach selects variables that are jointly
predictive, which is particularly important in the presence of correlated variables. We quantify the predictive contributions of
particular variables or sets of variables by comparing the out-of-sample predictive accuracy across distinct sparsity levels. Cru-
cially, we leverage the predictive distribution of the Bayesian linear model to augment these predictive evaluations with posterior
uncertainty quantification. The uncertainty quantification is valuable for informed comparisons and provides a mechanism for
selecting the smallest subset among nearly-optimal linear models. For computational scalability, we design an approximation
algorithm that avoids intensive model re-fitting for the out-of-sample evaluations and instead only requires a single model fit.
The statistical analysis is enabled by linking multiple administrative datasets to construct an analysis dataset that tracks

children in North Carolina from birth through time of lead testing and finally time of 4th grade standardized testing in reading
and mathematics. This work is also responsive to calls from leading researchers in support of research agendas that leverage
longitudinal population-based data linkages.12
The paper is organized as follows: Section 2 introduces the comprehensive database constructed for our study; in Section 3,

we develop in full the Bayesian variable selection methodology; results are presented in Section 4, which includes a simulation
study; we conclude in Section 5.

2 DATA

The analysis dataset16 for this study was created by linking three administrative databases for the State of North Carolina (NC)—
detailed birth records, blood lead surveillance data, and end-of-grade (EOG) standardized testing data—with extensive exposure
data. The exposure data include ambient air quality and temperature, socioeconomic factors, and indices that measure racial
isolation and neighborhood deprivation. In all, 25 variables and features are included. A short summary of the dataset is included
here, with a comprehensive list of variables provided in the Appendix. More detailed discussion of the dataset is available in
Bravo et al.17

Detailed birth records were obtained from the NC State Center for Health Statistics, Vital Statistics Department. The data
include information on maternal demographics, maternal and infant health, and maternal obstetrics history for all documented
live births in NC. The analysis dataset restricts to students born in 2000, which facilitates linking with the Census-based datasets
below.

Blood lead surveillance records were obtained from the state registry maintained by the Childhood Lead Poisoning Preven-
tion Program of the Children’s Environmental Health Unit, Department of Health and Human Services in Raleigh, NC. Blood
lead levels are stored as integer values. The analysis dataset includes measurements from 2000-2011.
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EOG standardized testing data were obtained from the NC Education Research Data Center of Duke University in Durham,
NC. Children in NC in grades 3–8 are tested in reading and mathematics at the end of the school year.18 The database contains
records for all EOG test results statewide for tests from the 1995–1996 school year to the present; the analysis dataset restricts
to 4th grade EOG exams in reading and mathematics in 2010-2012. The dataset also includes identifying information such as
name and birth date and data on demographics and socioeconomics, English proficiency, and school district.

Air pollution exposure metrics are based on daily 24-hour averages of ambient PM2.5 concentrations obtained from two
different sources: the US Environmental Protection Agency National Air Monitor Stations or State and Local Air Monitoring
Stations (NAMS/SLAMS) monitoring network (1999-2000); and publicly available output from the Community Multiscale Air
Quality (CMAQ) downscaler (2010-2012). These exposure metrics are converted into pre-natal exposure, which is the average
exposure by trimester of pregnancy (1-13 weeks, 14-26 weeks, and 27 weeks to birth); chronic exposure, which is the average
exposure for one year prior to EOG testing; and acute exposure, which is the average exposure for 30 days prior to EOG testing.
The prenatal metrics use the closest monitor within 30km of the mother’s residence, while the chronic and acute metrics use the
closest monitor within 30km of the child’s residence.

Ambient temperature data were obtained from the State Climate Office of NC. Temperature exposure was computed as the
average exposure by trimester of pregnancy (1-13 weeks, 14-26 weeks, and 27 weeks to birth) using the nearest weather station
within 50km of the mother’s residence.

Racial isolation (RI) and neighborhood deprivation (NDI) are critical indices that measure social stress. RI is based on
2000 and 2010 Census data using a previously derived local, spatial measure of RI,19 which is in turn derived from the global
spatial isolation index developed by Reardon and O’Sullivan.20 The RI index ranges from 0 to 1, with values close to 1 indicating
the neighborhood environment is almost entirely non-Hispanic black (NHB). NDI values were calculated at the census tract
level based on 2000 and 2010 Census data using a previously derived measure of NDI.21 The NDI empirically summarizes
eight census variables representing five socio-demographic domains (income/poverty, education, employment, housing, and
occupation), including: percent of males in management and professional occupations, percent of crowded housing, percent of
households in poverty, percent of female headed households with dependents, percent of households on public assistance and
households earning <$30,000 per year estimating poverty, percent earning less than a high school education, and the percent
unemployed. Higher values of NDI indicate more severe neighborhood deprivation. To account for neighborhood dynamics,
each child was assigned an RI and NDI value at time of birth and at time of EOG testing. RI and NDI at birth were assigned
based on the child’s tract of residence at time of birth (obtained from the detailed birth records), using RI and NDI calculated
from 2000 Census data. RI and NDI at time of EOG testing were assigned based on the child’s tract of residence at time of
testing (obtained from the EOG testing data), using RI and NDI calculated from 2010 Census data.
Methods for receiving, storing, linking, analyzing, and presenting results related to this study were all governed by a research

protocol approved by the Rice University Institutional Review Board.

3 METHODS

3.1 The Bayesian linear model
Bayesian linear regression provides a compelling platform from which to address the challenges in our analysis: the linear
modeling structure inherits the interpretability of classical linear regression, while the prior distribution conveys advantages for
regularization of unimportant variables, (posterior) uncertainty quantification, and improved predictions. Consider the paired
observations {yi, xi}ni=1 where yi ∈ ℝ denotes the response variable and xi is the p-dimensional predictor, which may include
interaction terms. The Bayesian linear model is

yi = x′i� + �i, �i
iid∼ N(0, �2) (1)

� ∼ p(�) (2)

where p(�) denotes a prior distribution on the regression coefficients. The prior distribution (2) has long served as a mecha-
nism for introducing regularization in the linear model: Bayesian ridge regression �j ∼ N(0, �2� ) and the Bayesian lasso22 are
adaptations of non-Bayesian regularization techniques which seek to combat multicollinearity and mitigate the effects of unim-
portant predictor variables. More commonly, Bayesian regression utilizes shrinkage priors such as the horseshoe prior23 and
the Dirichlet-Laplace prior,24 which demonstrate improved point estimation and posterior contraction properties,13,25 especially
for sparse regressions in which many coefficients may be negligible. Shrinkage priors are continuous distributions, usually scale
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mixtures of Gaussian distributions, which are designed for both regularization and computational scalability. By comparison,
sparsity-inducing priors, such as spike-and-slab priors,26,27,28,29 place a positive probability on �j = 0. Although conceptually
appealing, sparsity-inducing priors face significant challenges for computation and inference. Nonetheless, sparsity-inducing
priors are compatible with the methods introduced below.
Regardless of the choice of prior, Bayesian inference proceeds via the posterior distribution p(�|y) from model (1)-(2). The

posterior distribution is rarely available analytically, especially for shrinkage priors, and therefore posterior inference most
commonly uses Markov Chain Monte Carlo (MCMC) algorithms. For many choices of (2), an efficient elliptical slice sampler30
is available for obtaining samples from the posterior distribution of the regression coefficients. Using these samples, posterior
summaries such as expectations, standard deviations, and credible intervals are easily computable.
Although the posterior distribution p(�|y) encapsulates information about variable importance, additional tools are needed to

select and evaluate joint subsets of variables. In practice, the vast majority of Bayesian variable selection proceeds marginally
for each coefficient �j , including hard-thresholding under shrinkage priors,13 marginal inclusion probabilities under sparsity-
inducing priors,14 or selection based on credible intervals that omit zero.15 While useful summaries, these approaches fail to
consider variables jointly, which is particularly important for correlated predictors and interactions. In addition, marginally-
selected variables do not necessarily comprise an adequately predictive linear basis relative to the full model, and indeed are
not constructed or evaluated for this purpose. The implication is that, for a set of marginally-selected variables, it is incorrect
to interpret them jointly as a predictive model: for instance, we cannot claim that these variables are sufficient to explain the
variability in the data. Marginal selection is not without benefits, for example as a tool to screen unimportant variables in
ultrahigh-dimensional data,31 but must be interpreted carefully. Alternatively, some point estimation techniques produce sparse
estimates of � within a Bayesian linear model,32 but these methods are not accompanied by uncertainty quantification for either
the coefficients � or metrics for evaluating predictive accuracy associated with various sparsity levels. Consequently, techniques
that provide both selection and uncertainty quantification for the selection process are at a premium.

3.2 Decision analysis for Bayesian variable selection
Bayesian variable selection is a decision problem: using the full model posterior, the task is to determine a minimal subset of
variables that nearly preserve—or if possible, improve upon—the fitness of the full model. Fitness is evaluated using predic-
tive performance and measured by a loss function, such as squared error loss. Importantly, the loss function may be augmented
with a sparsity-inducing penalty, which admits a formal expression of the tradeoff between predictive accuracy and model sim-
plicity. Decision analysis proceeds to minimize the posterior predictive expected loss; intuitively, this procedure averages the
loss function over future or unobserved values of the response variable and then minimizes the resulting expression. Impor-
tantly, we obtain computationally convenient representations of this objective, with model selection uncertainty quantification
(Section 3.4) and rapidly-computable out-of-sample comparisons (Section 3.5).
For any covariate value x̃, the linear model assigns a posterior predictive distribution to the associated response variable ỹ:

p(ỹ|y) = ∫ p(ỹ|�)p(�|y)d�, � = (�, �2) (3)

where ỹ|� ∼ N(x̃′�, �2) is conditionally independent from the observed data y = (y1,… , yn)′. Notably, (3) defines a distribution
over the possible realizations of the response variable at a particular covariate value and conditional on all observed data. The
posterior predictive distribution is fundamental for point prediction, but also provides uncertainty quantification for predictive
functionals, such as ỹ itself and measures of predictive loss (see Section 3.4).
More generally, consider the task of prediction at covariates {x̃i}ñi=1, which may be distinct from the observed covariates

{xi}ni=1. The choice of {x̃i}
ñ
i=1 can target predictions for specific designs, subject characteristics, or subpopulations of interest.

The corresponding predictive variables are denoted {ỹi}ñi=1, which are the unobserved or future values of the response variable
at each predictor x̃i. The posterior predictive distribution p(ỹi|y) is given by (3) with ỹi|� ∼ N(x̃′i�, �

2), and is not required to
be known analytically: samples {ỹsi}

S
s=1 ∼ p(ỹi|y) are sufficient, which usually are obtained by sampling �s ∼ p(�|y) from the

posterior and ỹsi ∼ p(ỹi|�
s) from the aforementioned Gaussian distribution. Regardless of the choice of covariate values {x̃i}ñi=1,

the posterior predictive distribution conditions on all available data.
For simultaneous evaluation of both predictive accuracy and model complexity, we consider the following loss function:

�({ỹi}ñi=1, �) =
1
ñ

ñ
∑

i=1
||ỹi − x̃′i�||

2 + �(�) (4)
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where � is a p-dimensional vector of linear coefficients and  is a complexity penalty. The complexity parameter � ≥ 0 con-
trols the tradeoff between accuracy and complexity, with larger values of � encouraging simpler models. The squared error
loss measures fitness of the linear point prediction x̃′i� for some value of �, which is to be determined. Many choices of com-
plexity penalization are available, but for the purpose of variable selection, we consider sparsity-inducing penalties such as
l1-penalization and its variants (see Section 3.3). In this context, a simpler model is one which includes fewer variables, i.e.,
�j = 0 for some or many j ∈ {1,… , p}, and the goal is to maximize predictive performance in the presence of sparsity.
To obtain optimal coefficients � for a given complexity level �, we minimize the posterior predictive expectation of (4), which

averages over the uncertainty implicit in each predictive variable ỹi conditional on the observed data y:

�̂� = argmin� E[ỹ|y]�({ỹi}ñi=1, �) (5)

where the expectation is taken with respect to (3) for each p(ỹi|y). By varying �, the solution in (5) generates a path of optimal
coefficients at varying complexity levels. From (3), it follows that E[ỹ|y]�({ỹi}ñi=1, �) = E[�|y]E[ỹ|�]�({ỹi}ñi=1, �). We evaluate
these expectations sequentially. The penalty term is fixed and remains constant throughout, so for notational simplicity we
consider the unpenalized case, � = 0. Observing Eỹ|� ỹi = x̃′i�, we simplify as follows:

E[ỹ|�]0({ỹi}ñi=1, �) =
1
ñ

ñ
∑

i=1
E[ỹ|�]||ỹi − x̃′i�||

2 = 1
ñ

ñ
∑

i=1
E[ỹ|�]||(ỹi − x̃′i�) + (x̃

′
i� − x̃

′
i�)||

2

= �2 + 1
ñ

ñ
∑

i=1
||x̃′i� − x̃

′
i�||

2

since �2 = 1
ñ

∑ñ
i=1 E[ỹ|�]||ỹi − x̃

′
i�||

2. Letting �̂ = E�|y(�) and �̂2 = E�|y(�2) be the posterior expectations, the outer expectation
of the loss function simplifies similarly:

E[�|y]

{

�2 + 1
ñ

ñ
∑

i=1
||x̃′i� − x̃

′
i�||

2

}

= �̂2 + 1
ñ

ñ
∑

i=1
E[�|y]||(x̃′i� − x̃

′
i�̂) + (x̃

′
i�̂ − x̃

′
i�)||

2

= �̂2 + 1
ñ
trace

(

X̃′X̃Σ̂�
)

+ 1
ñ

ñ
∑

i=1
||x̃′i�̂ − x̃

′
i�||

2

where X̃ = (x̃1,… , x̃ñ)′ is the specified design matrix and Σ̂� = Cov[�|y](�) is the posterior covariance of �. Conclusively, we
omit additive constants that do not depend on � to identify an equivalent expression for the optimal parameters from (5):

�̂� = argmin�

{1
ñ
||ŷ − X̃�||2 + �(�)

}

(6)

where ŷ = E[ỹ|y]ỹ = X̃�̂ is the point prediction at X̃ under the linear model (1)-(2). This expectation is easily and quickly
computable using posterior draws of �, e.g., ŷ ≈ X̃�̄ for �̄ = S−1

∑S
s=1 �

s with �s ∼ p(�|y).
The representation in (6) is valuable: the decision analysis posited in (5) is solved as a penalized least squares problem. For

many choices of penalties , efficient algorithms exist for solving (6); all that is required is the pseudo-response variable ŷ = X̃�̂
and the accompanying design matrix X̃. By varying �, we obtain solutions to (5) that vary in complexity. When  is a sparsity-
inducing penalty, we obtain subsets of variables that are optimized for the point predictions under the full model. For example,
the l1-penalty, (�) =

∑p
j=1 |�j|, induces a lasso regression problem33 with ŷ as data, so the parameters �̂� are computable

using standard software such as the glmnet34 package in R.
There is a fundamental distinction between the linear coefficients � and �. In particular, � is a parameter of the Bayesian

model and therefore is endowed with a prior distribution. By comparison, � is any p-dimensional vector, and in that sense is
entirely disconnected from the Bayesian model. The operation in (5) optimizes � based on the model and the loss function,
and the solution (6) is an expected functional under the posterior distribution. Hence, it is not coherent to place a prior on � or
�: these define the actions and loss functions, respectively, in the decision analysis but they are not parameters of the model.
While the prior on � may record our preference for sparse linear coefficients, this does not guarantee sparsity of any particular
posterior functional or summary. For illustration, consider the unpenalized case with � = 0. Using any design matrix X̃, the
(possibly nonunique) solution to (6) is simply �̂�=0 = �̂, which is the posterior expectation of the regression coefficients in (1).
However, this quantity is not sparse even in the case of sparsity-inducing priors and therefore cannot provide variable selection.
By allowing � > 0, we admit linear coefficients that jointly optimize for prediction and sparsity.
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The decision analysis approach to variable selection has historical roots35 with modern development.36,37 Related approaches,
often termed posterior summarization, have been developed for multiple linear regression and logistic regression,36 nonlinear
regressions,38 time-varying parameter models,39 functional regression,40 graphical models,41 and seeming unrelated regres-
sions.42 However, existing methods face several important limitations. First, they all rely on in-sample quantities for evaluation.
Out-of-sample metrics are more suitable for predictive evaluation, which is essential for model comparison and selection. In-
sample metrics have a greater risk of overfitting, and therefore may favor models that are unnecessarily complex. Second, these
methods provide limited guidelines for model determination, and often use in-sample graphical summaries. It is important to
identify both (i) the best model for predictive accuracy and (ii) the set of models that are close enough to the best model in
predictive performance. Leaving precise definitions to the next section, we emphasize that these notions fundamentally rely
on evaluations of predictive performance—which is most appropriately determined out-of-sample. Lastly, these approaches
commonly adopt an adaptive penalty akin to the adaptive lasso43 in place of the l1-penalty. However, these existing adaptive
penalization schemes are not coherent within the decision analysis framework of (4) and (5). This issue is addressed and resolved
in the next section.

3.3 Generalized penalties and the Bayesian adaptive lasso
The task of variable selection requires a sparsity-inducing penalty for  . Equally important, the optimal coefficients are only
available upon solving the penalized least squares problem (6). Mutual consideration of sparsity and computational scalability
suggests l1-penalization, for which the penalized least square problem is equivalent to the lasso33 using ŷ as data. However,
the l1-penalty is known to introduce substantial bias for large coefficients, and cannot simultaneously provide correct variable
selection and optimal estimation in a frequentist context.43 Adaptive penalization methods44,43 attempt to correct the subop-
timality of the l1-penalty and have demonstrated wide success in practice. These approaches are distinct from the decision
analysis framework of (4)-(5): the response variable in the penalized least squares problem (6) is ŷ and not the original data y.
More generally, classical adaptive penalization methods do not operate in the same Bayesian framework of (1)-(2), and therefore
require additional tools to provide uncertainty quantification.
In the context of decision analysis for Bayesian variable selection, several authors have considered adaptive penalties for

 .36,37,38,39,40 These approaches adopt a common form which mimics the adaptive lasso43:

0(�) =
p
∑

j=1
!̂0j |�j|, !̂0j = |�̂j|

− (7)

where �̂ = E�|y(�) and  > 0, typically with  = 136,38,40 or  = 2.37,39 The adaptive penalty in (7) does not introduce any
additional complexity for computation relative to the l1-penalty. However, this approach is not coherent within the decision
analysis framework of (4)-(5): the penalty function  is treated as known in (4), while (7) requires an estimate of a posterior
quantity. Implicitly, this approach ignores the uncertainty in unknown model parameters.
We propose fully Bayesian model-based penalization, which allows the regularization behavior and notion of complexity in

the predictive optimization problem to be informed by the model within a coherent decision analysis framework. Specifically,
we generalize the loss function (4) as follows:

�({ỹi}ñi=1, �, �) =
1
ñ

ñ
∑

i=1
||ỹi − x̃′i�||

2 + �(�, �) (8)

where the penalty is now permitted to depend on model parameters �. Within this framework, we introduce a Bayesian adaptive
lasso penalty:

(�, �) =
p
∑

j=1
!j|�j|, !j = |�j|

− (9)

where  > 0. Notably, (9) depends on the regression coefficients �, which are unknown and random quantities.
To extract optimal coefficients from the generalized loss function, we now integrate over two sources of uncertainty: (i) the

predictive variables ỹi and (ii) the model parameters �, in both cases conditional on the observed data y. The optimal coefficients
are identified by minimizing the iterated expected loss:

�̂� = argmin� E[�|y]
{

E[ỹ|y,�]�({ỹi}ñi=1, �, �)
}

. (10)
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Under the mild condition that E[�|y]|(�, �)| <∞ for some �, the arguments in Section 3.2 imply that (10) is equivalent to

�̂� = argmin�

{1
ñ
||ŷ − X̃�||2 + �(�)

}

(11)

where (�) = E[�|y](�, �) is the posterior expectation under (1)-(2). For the Bayesian adaptive lasso in (9), the penalty required
to solve (11) is

(�) =
p
∑

j=1
!̂j|�j|, !̂j = E[�|y]

(

|�j|
−) . (12)

The necessary weights are easily estimable using posterior simulations: !̂j ≈ S−1
∑S
s=1 |�

s
j |
− with �s ∼ p(�|y). Therefore,

the optimal coefficients in (10) are readily available—again using standard software such as the glmnet34 package in R—with
minimal additional costs relative to (non-adaptive) l1-penalization.
The adaptive weights in (12) are distinct from both the adaptive lasso43 and previous approaches for sparse decision analy-

sis.36,37,38,39,40 In the adaptive lasso, the estimator for the weights is |�̂olsj |

− where �̂olsj is the ordinary least squares estimate of
�j in (1). Notably, �̂olsj is only well-defined for p < n; by comparison, (12) is valid for p > n for many choices of shrinkage priors
in (2). More specifically, the adaptive lasso requires a consistent estimate of �j in (1) in order to obtain both selection consis-
tency and an optimal estimation rate. From the continuous mapping theorem, this is equivalent to consistent estimation of the
weight !j = |�j|− , so in that context there is no need to distinguish between estimation of �j and !j . However, from a Bayesian
perspective, the order of estimation matters due to the presence of (posterior) expectations. Jensen’s inequality implies that the
proposed weights are larger than those in 0: !̂j ≥ !̂0j . The discrepancy between the weights is greatest when |�̂j| is small;
when |�̂j| is large, the weights are effectively indistinguishable. Therefore, the proposed penalty is more aggressive in weighting
small coefficient estimates toward zero without introducing additional bias for the large coefficient estimates. Nonetheless, the
effects of small sampled values of |�sj | on !̂j can be mitigated by decreasing  . More broadly, the proposed approach is coherent
within a decision analysis framework: the loss function (8) depends on predictive and posterior variables ỹi and �, respectively,
which are integrated out using the posterior distribution under model (1)-(2).

3.4 Model determination from predictive performance
The decision analysis elicits optimal coefficients �̂� in (10) for each value of the complexity parameter, �. It is informative to
evaluate and compare these coefficients at various levels of complexity. The goal is determine (i) which � delivers the best
predictive performance and (ii) which complexity levels � are close enough in predictive accuracy relative to the best model.
Criterion (ii) encapsulates the core tradeoff between accuracy and simplicity: although the best model might be complex, there
may exist one or more simpler models that achieve nearly the same performance. In the context of variable selection, � controls
the tradeoff between accuracy and sparsity: for an l1-penalty or the Bayesian adaptive lasso (9), � = 0 produces a solution with
maximal complexity, so all variables are included, while � → ∞ returns the null model. Alternative specifications of  are
readily available, such as stepwise regression with forward selection or backward elimination, for which � can be defined to index
the model size. However, the resulting solutions �̂� are not continuous in �, which suggests a lack of stability and robustness.45
Nonetheless, the subsequent methodology remains valid for any choice of penalty as long as (6) is numerically solvable.
Our approach for evaluating predictive performance follows two core principles, which are similarly emphasized by Kowal46:

(i) predictions should be evaluated out-of-sample and (ii) evaluations should be accompanied by full uncertainty quantification.
Naturally, out-of-sample predictive evaluations are strongly preferred as more reliable assessments of the predictive capability
of a model. In-sample metrics tend to favor more complex models, which simultaneously encourages overfitting and undermines
the goal of producing simple or sparse solutions. Yet fundamentally, there is nonignorable uncertainty in the evaluation pro-
cess: predictive performance is inherently random and will vary across different testing datasets, even for the same values of the
predictors. This uncertainty is extremely valuable: it provides strength of evidence for a model and introduces a notion of equiv-
alence among models with similar predictive performance. Importantly, the uncertainty quantification is provided automatically
from model (1)-(2) and does not require additional assumptions.
Among frequentist methods, it is common to select the complexity parameter using cross-validation. It has been shown that

accounting for the uncertainty in model evaluation can improve selection and reduce bias in prediction.47,48 The one-standard-
error rule48 is a popular choice for model selection: instead of selecting the best model, this rule selects the simplest model
within one standard error of the best model. Similarly, Lei47 proposes a K-fold cross-validation procedure coupled with a
multiplier bootstrap to construct a confidence set of acceptable models. These techniques are successful because they account
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for nonignorable uncertainty in the evaluation process, and then leverage that information for model selection. Our approach is
conceptually adjacent to these methods, yet fundamentally different due to the presence of the Bayesian model (1)-(2). Bayesian
analysis attributes uncertainty to a probability distribution. In the context of predictive evaluation, that distribution is the posterior
predictive distribution. We use this distribution to construct interpretable metrics of predictive performance accompanied by
full posterior uncertainty quantification.
Note that one approach for decision analytic Bayesian variable selection, called signal adaptive variable selection (SAVS),37

claims to avoid the issue of selecting �. However, SAVS uses the optimization criterion (6) with the penalty (7), but simply sets
� = 1. This does not obviate the need to select �: it is just one possible choice for the sparsity level. Furthermore, this approach
fails to provide any (out-of-sample) comparative evaluation for models of differing sparsity levels, and consequently cannot
provide the necessary uncertainty quantification for predictive performance among models of varying complexity.
In conjunction with the concurrent work by Kowal,46 we introduce two complementary notions of proximity in predictive

performance, which are made precise below. First, let � ≥ 0 define a margin for acceptable performance: any model with
predictive performance within � of the best model is considered acceptable. The margin � is selected by the scientific investigator
and varies according to the need to achieve a certain level of accuracy, including � = 0, and may be expressed relative to the error
variance �2 in (1). Second, note that predictive performance is inherently random: model accuracy will vary across different
testing datasets, even for the same values of the predictors. In particular, a simplified (or sparse) model may not perform within �
of the best model for a particular testing dataset, but nonetheless may achieve this margin with some (possibly small) probability.
We define " ∈ [0, 1] to be a probability level such that, according to the predictive distribution (3) under the linear model, there
is at least " probability that the simpler model matches or exceeds the predictive ability of the best model (within a margin of
�). Acceptable models must satisfy these criteria, which depend on both the margin � and the probability level ".
For concreteness, we proceed to measure accuracy using mean squared error (MSE), although the subsequent results are

generalizable for other performance metrics. The in-sampleMSE is defined by

MSEin� =
1
n

n
∑

i=1
(yi − x′i �̂�)

2 (13)

which evaluates the point prediction parameters �̂� at the observed data {yi, xi}ni=1. For an analogous predictive quantity, consider
the MSE evaluated at ỹi ∼ p(ỹi|y) in (3):

M̃SE
in
� =

1
n

n
∑

i=1
(ỹi − x′i �̂�)

2 (14)

which is the predictive (in-sample)MSE. Notably, (14) incorporates the distribution of future or unobserved values ỹi at covariate
value xi and conditional on all observed data. Since M̃SE

in
� is a predictive quantity, it is accompanied by posterior uncertainty

quantification under model (1)-(2). However, M̃SE
in
� is an in-sample quantity: the distribution is conditional on all observed

data {yi}ni=1, and therefore incorporates the information in the observed value of yi at each xi. By comparison, out-of-sample
prediction does not have the benefit of observing each yi, so there is inherently greater uncertainty in the corresponding predictive
distribution of ỹi. It is the latter setting that is more representative of practical prediction problems.
To construct out-of-sample MSEs and predictive MSEs, we adjust the key components of (13) and (14)—namely, the optimal

coefficients �̂� and the predictive variables ỹi—to condition only on a subset of the data, the training data, and evaluate on
the remaining (now out-of-sample) testing data. Repeating this procedure for K distinct and randomly-selected training/testing
splits reduces the sensitivity to any particular split, and produces a Bayesian K-fold cross-validation procedure. Let k denote
the indices of the kth holdout (test) dataset, k = 1,… , K , with ∪Kk=1k = {1,… , n}. The holdout sets k are typically equally-
sized, mutually exclusive, and selected randomly from {1,… , n}. Let y = {y−k , yk}, so y−k and yk refer to the training and
testing datasets, respectively. For each fold k = 1,… , K , we define the out-of-sample MSE and predictive MSE as follows:

MSEout� (k) =
1

|k|
∑

i∈k

(

yi − x′i �̂
−k
�

)2
, M̃SE

out
� (k) =

1
|k|

∑

i∈k

(

ỹ−ki − x′i �̂
−k
�

)2
(15)

where �̂−k� minimizes the expected loss (10), but restricted to the training data y−k ,

�̂−k� = argmin
�

E[�|y−k ]
{

E[ỹ|y−k ,�]�(ỹ−k , �, �)
}

(16)

and similarly ỹ−ki ∼ p(ỹi|y−k) is the predictive variable at xi but conditional only on the training data y−k . This out-of-sample
predictive distribution is fundamentally distinct from the in-sample predictive distribution, p(ỹi|y) = p(ỹi|y−k , yk), which
inappropriately conditions on the testing data yk . The out-of-sample MSEs in (15) better capture the essence of the prediction
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task, where the predictand is not available for model-fitting of (1)-(2) or solving (16). Since these quantities may be sensitive to
the specific testing set k, we average (15) over all K testing sets:

MSEout� = 1
K

K
∑

k=1
MSEout� (k), M̃SE

out
� = 1

K

K
∑

k=1
M̃SE

out
� (k) (17)

which is advocated in the literature.47,46 When the holdout sets are mutually exclusive, each observation i = 1,… , n appears
exactly once in (17). Computation of (17) requires solving (16) and obtaining the out-of-sample predictive distribution ỹ−ki ∼
p(ỹi|y−k). Although these quantities may be calculated using brute-force model re-fitting for each k = 1,… , K , we provide a
substantially simpler and faster approximation in Section 3.5 which completely avoids the need for Bayesian model re-fitting.
Given the out-of-sample MSEs, we are now able to define formally the evaluation and selection procedure. First, we define

the best model to be the minimizer of out-of-sample MSE:

�min = argmin� MSEout� (18)

which equivalently identifies the complexity parameter �min corresponding to the smallest K-fold cross-validated MSE. This
choice of � serves as a reference point: we are interested in identifying models that perform nearly as well as �min, and among
those, models with minimal complexity. Next, consider the out-of-sample predictive variable

̃gapMSE
out
� = M̃SE

out
� − M̃SE

out
�min

(19)

which is the gap between model � and the best model �min. The set of acceptable models46 is

Λ�," =
{

� ∶ ℙ
( ̃gapMSE

out
� ≤ ��2

)

≥ "
}

. (20)

According to (20), any model with at least " ∈ [0, 1] probability of matching the accuracy of the MSEout� -optimal model �min
within ��2 is considered acceptable. The probability ℙ is computed with respect to the out-of-sample predictive distributions
in (17) under model (1)-(2) and estimated using posterior predictive simulations. The set of acceptable models is nonempty,
since �min ∈ Λ�," for all � ≥ 0 and " ∈ [0, 1]. More useful, (20) gathers the set of models which demonstrate near-optimal
performance—some of which may be more simple or sparse than �min.
The acceptable set of models in (20) is equivalently derived using posterior predictive intervals46: � ∈ Λ�," if and only if

there exists a (1 − ") lower posterior predictive credible interval for ̃gapMSE
out
� ∕�

2 that includes �. Naturally, if the predictive
interval for the increase in out-of-sample MSE excludes �, such as � = 0, then this choice of � is deemed unacceptable and
omitted from Λ�,". From this interpretation, (20) is a Bayesian analog of “cross-validating with confidence" (CVC).47 CVC
computes a confidence set of acceptable models by testing the null hypothesis that each � produces the best predictive risk;
if the null is rejected, then � is excluded from the confidence set. By comparison, the proposed Bayesian approach leverages
the posterior predictive distribution—automatically available from the linear model (1)-(2) with no additional assumptions—
which precludes the need for computationally-intensive bootstrapping procedures, and incorporates a margin � ≥ 0 to relax the
accuracy requirements and permit simpler models.
From the set of acceptable models, we identify the simplest, or most penalized model:

��," = maxΛ�,". (21)

Both ��," and Λ�," depend on the complexity penalty  and the solution path. For a sparsity-inducing penalty  , ��," is the
smallest model along the � path that belongs to the set of acceptable models Λ�,". Selection via (21) is a Bayesian analog of the
one-standard-error rule48 which, instead of selecting the best model, selects the simplest model that is close enough to the best
model. The intuition behind (21) is the same, but instead incorporates uncertainty quantification through the posterior predictive
distribution.

3.5 Approximations for fast out-of-sample validation
The construction of the set of acceptable models Λ�," hinges on the ability to estimate out-of-sample quantities, namely, (16)
and (17). Re-fitting model (1)-(2) for each training set k = 1,… , K is impractical and may be computationally infeasible for
moderate to large sample sizes n. We design an alternative approximation based on importance sampling that only requires a
single model fit of (1)-(2) using the full dataset—which is necessary for standard posterior inference.
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To proceed, we begin by simplifying the out-of-sample predictive expected loss in (16). Following the arguments in
Section 3.2 - 3.3, it is straightforward to show

�̂−k� = argmin
�

{

(n − |k|)−1
∑

j∉k

(ŷ−kj − x′j�)
2 + �(�)−k

}

(22)

where ŷ−kj = E[ỹ|y−k ]ỹj = x̃′j �̂
−k is the out-of-sample point prediction at x̃j , �̂−k = E[�|y−k ]� is the posterior expectation of �

conditional only on the training data y−k , and similarly (�)−k = E[�|y−k ](�, �) is the posterior expectation of (9) conditional
only on y−k . Given estimators of �̂−k and (�)−k , the out-of-sample predictive expected loss (16) is equivalent to a penalized
least squares problem (22), which has the same form as the in-sample version (6) or (11). Importantly, (22) is efficiently solved
for many choices of complexity penalty  , including the Bayesian adaptive lasso penalty (9).
Building upon the representation in (22), we proceed to approximate the core quantities needed for out-of-sample evaluation:

�̂−k = E[�|y−k ]�, (�)−k = E[�|y−k ](�, �), and ỹ
−k
i ∼ p(ỹi|y−k) for i ∈ k. All approximations are constructed using the

same importance sampling framework. For the regression coefficients, we approximate

�̂−k = ∫ �p(�|y−k) d� = ∫ �p(�|y−k) d� ≈
S
∑

s=1
�sws

k (23)

where � = (�, �2) are model parameters, {�s}Ss=1 are drawn from a proposal distribution, and {ws
k}
S
s=1 are the importance

weights. For the proposal distribution, we select the full posterior, p(�|y) = p(�|y−k , yk), which will produce an accurate
approximation for p(�|y−k) unless the testing points yk are highly influential for the posterior of �. For this proposal, the
importance weights simplify to

ws
k ∝ 1∕p(yk |�

s) =
∏

i∈k

1∕p(yi|�s), �s ∼ p(�|y) (24)

under the conditional independence assumption accompanying model (1). The importance weights in (24) constitute an out-of-
sample adjustment: relative to (23), the in-sample posterior expectation is typically estimated by �̄ = S−1

∑S
s=1 �

s.
The approximation for the penalty proceeds similarly: (�)−k ≈

∑S
s=1 (�, �

s)ws
k, which further simplifies for the Bayesian

adaptive lasso to (�)−k ≈
∑p
j=1 !̄j|�j| with !̄j =

∑S
s=1w

s
k|�

s
j |
− . Importantly, the out-of-sample adjustment from (24)

requires only (i) the posterior draws �s ∼ p(�|y) and (ii) computation of the Gaussian likelihood (1), and therefore incurs
minimal additional computational costs. The use of the full posterior distribution as the proposal for an out-of-sample predictive
distribution has been employed successfully for Bayesian model selection49 and evaluating predictive distributions.50,46
To obtain draws from the out-of-sample predictive distribution ỹ−ki ∼ p(ỹi|y−k), we directly build upon the importance

weights constructed in (24). The out-of-sample predictive distribution has the same form as the (in-sample) predictive dis-
tribution (3), p(ỹi|y−k) = ∫ p(ỹi|�)p(�|y−k) d�, so draws from this distribution can be generated by iteratively sampling
�s ∼ p(�|y−k) and ỹsi ∼ p(ỹi|�s). Again using the full posterior p(�|y) as the proposal, we generate draws from the out-of-
sample predictive distribution p(ỹi|y−k) using sampling importance resampling (SIR) based on the importance weights in (24).
Specifically, let S̃ ≪ S denote the number of SIR simulations. Given samples {�s}Ss=1 from the full posterior, we iterate the fol-
lowing algorithm: (i) sample s∗ ∈ {1,… , S} with associated probabilities {w1

k,… , wS
k }; (ii) sample ỹs∗i ∼ p(ỹi|�s

∗) from the
likelihood (1); (iii) discard s∗ andws∗

k from the set of indices and weights; (iv) repeat for S̃ iterations. The final sample {ỹs∗i }
S̃
s∗=1

is distributed p(ỹi|y−k). Sampling without replacement from step (iii) helps mitigate the effects of excessively large weights:
when ws∗

k is large, the same value ỹs∗i may be sampled many times and can produce a degenerate sample of {ỹs∗i }
S̃
s∗=1.

Using importance sampling and SIR, the out-of-sample predictive evaluations in (17)—including uncertainty quantification
via the predictive MSE—are rapidly computable using only (i) posterior (predictive) simulations under the linear model (1)-(2),
(ii) pointwise likelihood evaluations for the Gaussian distribution (1), and (iii) the solution to the penalized least square problem
(22). For completeness, the algorithm is presented in Algorithm 1.
Note that steps 2(d) and 3 are the only components that depend on the complexity level �. Therefore, the remaining steps

represent a one-time cost for use with all approximating models or penalties. Similarly, only step 3 depends on the choice of
metric: alternatives to MSE, such as mean absolute error, may be included at this stage without affecting the broader algorithm.
For the Bayesian adaptive lasso penalty (9), the optimization in step 2(d) is done using the glmnet34 package in R. In the event
of large importance weights, the out-of-sample posterior expectations �̂−k and !̄j instead may be estimated using the sample
means from the SIR draws, i.e., �̂−k ≈ S̃−1

∑S̃
s∗=1 �

s∗ and !̄j ≈ S̃−1
∑S̃
s∗=1 |�

s∗
j |

− . In particular, sampling without replacement
eliminates the effect of excessively large importance weights. As a last resort, highly influential test data yk can be evaluated
out-of-sample without approximation, e.g., by re-fitting the linear model (1)-(2) on the training data y−k .
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Algorithm 1 Out-of-sample MSE and predictive MSE.

1. Obtain posterior samples {�s}Ss=1 ∼ p(�|y);

2. For each holdout set k = 1,… , K:

(a) Compute the (log) weights, logws
k
c
= − log p(yk |�

s) = −
∑

i∈k
log p(yi|�s) using the (Gaussian) log-likelihood in

(1), where
c
= denotes equality up to a constant;

(b) Estimate �̂−k ≈
∑S
s=1 �

sws
k and !̄j =

∑S
s=1w

s
k|�

s
j |
− ;

(c) Set ŷ−kj = x̃′j �̂
−k for j ∉ k;

(d) Compute �̂−k� by solving (22) for each �;

(e) Sample {ỹs∗i }
S̃
s∗=1 from p(ỹi|y−k) using the SIR algorithm for i ∈ k;

3. Compute MSEout� using �̂−k� and M̃SE
out
� using �̂−k� and {ỹs∗i }

S̃
s∗=1 in (17).

Perhaps most interesting, the proposed analysis is conducted entirely with out-of-sample objectives using in-sample comput-
ing. In particular, the evaluation metrics (17) and the set of acceptable models Λ�,"—as well as the best model �min and the
simplest acceptable model ��,"—are all constructed from out-of-sample quantities. At the same time, all of the necessary compu-
tations are performed using in-sample quantities, namely, the posterior samples under the linear model (1)-(2) coupled with the
importance sampling approximations described above. Consequently, the proposed approach reaps the benefits of out-of-sample
predictive analysis with minimal additional computational burden relative to the original posterior sampler.

4 RESULTS

4.1 Simulation Study
The proposed techniques are evaluated using simulated data. We focus on three key properties: (i) variable and model selec-
tion capabilities, (ii) point prediction accuracy of the response variable, and (iii) point estimation accuracy of the regression
coefficients. First, we investigate the ability of the acceptable model sets Λ�," to identify the correct subset of active (nonzero)
predictors. Naturally, this performance depends on the choice of margin � and the probability level ", as well as other features of
the simulation design such as the sample size and the strength of the signal. Next, we study the point prediction accuracy of the
proposed decision analytic approach. The decision analysis optimizes for point prediction under a sparsity or complexity con-
straint. Thus, it is important to assess whether there are empirical gains in accuracy relative to the full Bayesian model, among
other competitors. The estimation accuracy results are similar to the prediction results and are provided in the Appendix.
The simulated data are constructed to match the general features of the real dataset in Section 4.2, including the dimensionality

of the data, the signal-to-noise ratio, and the correlations, discreteness, and interactions among the predictor variables. We
construct p − 5 main effects and 5 interactions. First, we simulate continuous predictors xi,j from marginal standard normal
distributions with persistent correlation among predictors, Cor(xi,j , xi,j′) = (0.75)|j−j′|, and randomly permute the columns.
Next, discrete covariates are included by selecting 25% of these p − 5 covariates at random and binarizing at zero, i.e., among
the selected predictors j we update xi,j ← 1{xi,j ≥ 0} for all i = 1,… , n. Matching the pre-processing steps in Section 4.2,
the continuous predictors are centered and scaled to have sample mean zero and sample standard deviation 0.5, which helps
align the continuous and binary variables on similar scales.51 The 5 interaction effects are then generated via multiplication. In
particular, we include 7 signals among the p−5main effects and 2 signals among the 5 interactions. The main effect signals are
�∗j = ±2, while the interactions are smaller, �∗j = ±1.5, with the signs distributed evenly. Each active interaction corresponds
to at least one active main effect (weak hierarchy), while inactive interactions arise from both active and inactive main effects.
The intercept �∗0 = 1 is included and fixed throughout. Letting y∗i = x′i�

∗, we generate response variables yi = y∗i + �i with
independent errors �i ∼ N(0, �2true), where �

2
true = var(y∗i )∕SNR and SNR is the signal-to-noise ratio. We consider the designs

(n, p) ∈ {(10,000, 100), (1,000, 100), (200, 500)} with weak (SNR = 0.5) and strong (SNR = 3) signals. The randomization
steps are repeated for each of 500 simulations.



12 Kowal ET AL

For each simulated dataset, we implement the Bayesian linear regressionmodel (1)-(2) with a horseshoe prior.23 Samples from
the posterior and posterior predictive distributions are obtained using the elliptical slice sampler in the R package bayeslm.30
We save S = 10,000MCMC samples {�s}Ss=1 ∼ p(�|y) after discarding 5,000 initial iterations as a burnin. Using these posterior
samples, we solve (10) for �̂� across a path of � values using the glmnet34 package in R. The out-of-sample evaluations from
Section 3.4 are applied to this path of � values, specifically using K = 10-fold cross-validation and S̃ = S∕2 = 5,000 SIR
samples. For any choice of � and ", we subsequently construct the set of acceptable models Λ�,".
Among competing methods, we include both Bayesian and frequentist alternatives. To represent the full Bayesian linear

model, we compute the posterior means of �̂, which are used in both estimation and prediction, and select variables based on
whether the 95% highest posterior density interval for each �j excludes zero. For frequentist methods, we include the adaptive
lasso43 with ordinary least squares weights; for p > n, we use the (non-adaptive) lasso.33 The tuning parameter is selected using
the one-standard-error rule48 from 10-fold cross-validation and implemented using the glmnet34 package in R. In addition,
we include classical or exhaustive subset selection (after pre-screening to the first 30 predictors that enter the adaptive lasso
model) using the leaps52 package in R with the final subset determined by Mallow’s Cp. Lastly, we include minimax convex
penalization (MCP)53 implemented using ncvreg54 with the tuning parameter selected using 10-fold cross-validation.
Ideally, the set of acceptable models should include the truemodel, i.e., the subset of active variables {j ∶ �∗j ≠ 0}. This task

necessitates joint selection across all predictors, and is highly demanding: incorrect labeling of any one variable as active or
inactive leads to an incorrect model. Since the set of acceptable models is nested by (", �)—increasing " ∈ [0, 1] or decreasing
� ≥ 0 shrinks the acceptable set—it is of interest to determine the largest values of " and smallest values of � for which the true
model is acceptable. For any model indexed by �, consider the following constituent of (20):

"max(�) = ℙ
( ̃gapMSE

out
� ≤ ��2

)

. (25)

Equivalently, "max(�) is the maximum probability level " for which � belongs to the set of acceptable models with margin �. By
design, for any smaller probability level "′ ≤ "max(�)—which provides more leniency for inaccuracy—� remains acceptable,
� ∈ Λ�,"′ . We are interested in "max(�∗), where �∗ denotes the true model along the � path. If the true model is not along the �
path, we set "max(�∗) = 0. This definition is important: it interrogates the ability of the entire procedure—including the elicitation
of the � path—to capture the true model, rather than merely checking whether the true model belongs to the acceptable set.
Consequently, the true model must be both discovered and evaluated correctly to achieve "max(�∗) > 0.
For each simulated dataset, we compute "max(�∗) for a grid of � values. The results are presented in Figure 1 for SNR = 3.

For the larger sample sizes (n, p) = (10,000, 100) and (n, p) = (1,000, 100), there is rapid convergence to "max(�∗) = 1, while
" = 0.05 is capable of capturing the truemodel often evenwithout a margin � = 0. The high-dimensional case (n, p) = (200, 500)
is more challenging: convergence to "max(�∗) = 1 does not occur for a majority of simulations. The reason is that the � path
in this p > n setting often does not include the true model, and for those simulations "max(�∗) = 0. As a result, increasing the
margin � cannot admit the true model in the set of acceptable models. Importantly, these results suggest that the set of acceptable
models produced by a small probability level ", such as 0.05, and a small margin, including � = 0, can adequately capture the
true model. However, the quality of the � path of models is a limiting factor.
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FIGURE 1 The maximum "-level at which the true model is included for each �-margin (as percent of �2). Left to right:
(n, p) ∈ {(10,000, 100), (1,000, 100), (200, 500)} for SNR = 3. The horizontal line indicates " = 0.05. The points (x-marks) are
sample means and the gray bars are 90% intervals of "max(�∗) computed across 500 simulations.
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By design, the proposed decision analysis produces coefficient estimates that optimize for point prediction accuracy. Therefore,
it is relevant and interesting to evaluate predictions of y∗i . Informed by Figure 1, we consider the smallest acceptable model ��,"
with � = 0 and " = 0.05, and compare the predictions and estimates to the aforementioned competitors. In addition to root
mean squared errors (RMSEs) for y∗i , we compute the median size of the selected subsets across simulations for each method.
The results are displayed in Figure 2 across various simulation designs. Most notably, the proposed out-of-sample approach is
highly competitive and offers significant improvements relative to the full Bayesian model (i.e., the posterior mean), classical
subset selection, and the adaptive lasso in nearly all cases. The distinction between the in-sample and out-of-sample version is
most noticeable when the SNR is small, which favors the out-of-sample approach. The main competitor is MCP, which offers
predictive accuracy yet tends to select too many variables. The most challenging setting is p > nwith low SNR: since ��," selects
as few variables as needed to satisfy (20), the weak signal results in overly sparse models. Decreasing � includes additional
variables and, when � = 0, returns the posterior mean �̂—which is the best predictor in this setting. Our analysis in Section 4.2
considers the � path from this broader perspective (see Figure 3).
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FIGURE 2 Root mean squared errors (boxplots) for y∗i = x′i�
∗ with median subset sizes (annotations) for high (top) and low

(bottom) SNR with varying n, p. The proposed out-of-sample decision analytic approach provides highly competitive point
predictions with fewer covariates than competing methods, including large improvements over the full Bayesian model and
frequentist alternatives. Including the intercept, the true model size is 11.

For completeness, we also assessmarginal selection properties using true positive rates and true negative rates averaged across
all predictors and simulations. The results are in Table 1. In general, the out-of-sample approach offers competitive performance
that is similar to the adaptive lasso and MCP, but far superior to classical subset selection which tends to select too many
variables. Most notably, the primary Bayesian competitor—selection based on HPD intervals—is excessively conservative and
fails to identify many of the active variables. From a Bayesian perspective, joint variable selection using decision analysis offers
clear improvements relative to this popular marginal selection technique.
The Appendix includes RMSEs for �∗ (Figure B.1) and a sensitivity analysis on the choice of prior for �. Specifically,

Figure B.2 replicates the results in Figure 2 under the Bayesian lasso prior22 instead of the horseshoe prior. The well-known
deficiencies of the Bayesian lasso55 propagate to the decision analysis, yet the proposed approach maintains large advantages
relative to the full Bayesian model and some frequentist competitors.

4.2 Analysis of end-of-grade testing data
To identify joint collections of variables with predictive capabilities for educational outcomes, we apply the proposed methodol-
ogy to end-of-grade (EOG) reading andmathematics scores. The EOG reading andmathematics scores were analyzed separately
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using the same sample of n = 16,839 students and the same set of p = 37 covariates including 12 interactions. The con-
tinuous predictors are centered and scaled to have sample mean zero and sample standard deviation 0.5—prior to computing
interactions—which better aligns the continuous and binary variables on comparable scales.51 Posterior inference from the
Bayesian linear model (1)-(2) with a horseshoe prior23 was obtained using the bayeslm30 package in R. We save S = 10,000
MCMC samples {�s}Ss=1 ∼ p(�|y) after discarding 5,000 initial iterations as a burnin and thinning to every 10th iteration for more
satisfactory effective sample sizes. Trace plots confirm convergence and good mixing of the MCMC samples. As in Section 4.1,
we solve (10) for �̂� across a path of � values using the R package glmnet,34 and apply the out-of-sample evaluations from
Section 3.4 to this path of � values using K = 10-fold cross-validation and S̃ = S∕2 = 5,000 SIR samples.
To quantify how particular variables or sets of variables contribute to the predictive ability of the model, we present the

predictiveMSEs for both EOG reading and EOGmath scores in Figure 3with accompanying variable selection details in Table 2.
Specifically, we display posterior predictive means and 95% intervals for ̃gapMSE

out
� from (19), which is the gap in predictive

accuracy between each model along the � path and the best model according to out-of-sample MSE. Figure 3 serves a different
purpose from Figure 1: Figure 3 illustrates the predictive ability across sparsity levels �, while Figure 1 explores the ability to
select the “true" model as (�, ") vary. Although � and (�, ") are linked, the selection capabilities (Figure 1) are distinct from
relative predictive performance (Figure 3).
For both EOG reading and math scores, �min is the full model, which is unhelpful for selecting variables. However, the

predictive uncertainty quantification provides an avenue for selection: by considering models with a nonnegligble probability of
improving upon the best model �min, we obtain a set acceptablemodels with far fewer variables. The smallest acceptable model
��," for � = 0 and " = 0.05 has 21 and 22 covariates for EOG reading and EOG math scores, respectively, and in each case
ensures a probability of at least 5% that this sparse model is superior to the full model for out-of-sample prediction. Naturally, if
we admit a margin � > 0, we obtain even smaller acceptable models: for � less than 0.4% of the error variance �2, the smallest
acceptable models for both EOG reading and math scores have fewer than 15 variables. Figure 3 clearly illustrates that small
models with fewer than 10 variables are noncompetitive, while the gains beyond around 25 variables are marginal.
To extract interpretable conclusions from Figure 3, we report the selected variables corresponding to these sparse models in

Table 2. Variables are reported up to the smallest acceptable model for zero margin � = 0 and probability level " = 0.05. We
characterize the incremental gains offered by additional sets of predictors—expressed visually by the vertical jumps in Figure 3—
by considering the effect of varying the margin �. For any fixed probability level, say " = 0.05, each model along the � path will
be acceptable at some choice of margin �, which we denote by �min(�) = min{� ∶ � ∈ Λ�,0.05}. For any larger �′ > �min(�), this
model � ∈ Λ�′,0.05 remains acceptable. These values �min(�) are interpretable: they indicate a best case scenario in out-of-sample
predictive performance (at the " = 0.05 probability level) for each model � relative to the best model �min. In particular, we are
interested in large decreases in �min(�) that occur via addition of a small number of variables. These occurrences are indicated
by vertical black lines in Figure 3 and demarcated in Table 2.
The results from Table 2 indicate substantial overlap in selected variables between EOG reading and EOG math scores. In

addition, many of the basic demographic, social, and environmental variables are confirmed by adaptive lasso selection and
(marginal) selection via the 95% posterior credible intervals that exclude zero. These variables include maternal characteristics
(education level, ethnicity, age, and marital status), environmental exposures (temperature, PM2.5, blood lead level), and social
conditions (economically disadvantaged, neighborhood deprivation). The selected environmental exposures and social condi-
tions cover a broad temporal spectrum, including the gestational period, at the time of birth, chronic exposures, and at the time
of the exam.
The proposed approach selects additional variables that offer clear and quantifiable improvements in prediction accuracy.

Perhaps most notably, we identify evidence for social and environmental interactions that predict EOG reading and math
scores—even after adjusting for a multitude of other effects. For both EOG reading and math scores, we find that chronic PM2.5
interacts with racial isolation at the time of the exam. EOG math scores are additionally predicted by interactions between
blood lead level and neighborhood deprivation. Given the conservative nature of selection via credible intervals (see Table 1),
it is unsurprising that these variables are undetected by that approach. Yet the evidence for interactions is nontrivial: these
effects are present for �min(�) values as large as 0.307% of the error variance �2 for EOG math scores, and of course persist for
� = 0. While � = 0 is a strict criterion, it is necessary to provide the assurance that the smallest acceptable model �0,0.05 is not
definitively suboptimal relative to larger models. Cumulatively, these results suggest that a full predictive picture of EOG test
scores requires simultaneous consideration of the exam topic; demographic, socioeconomic, and environmental variables; and
interactions between environmental exposures and social conditions.
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FIGURE 3 The difference in out-of-sample predictive MSEs between each model along the � path and the best �min model for
EOG reading scores (left) and EOG math scores (right) as a percent of �2. Expectations (triangles) and 95% intervals (gray
bars) from the predictive distribution are included along with the out-of-sample MSEs (x-marks). The vertical black lines denote
the �min(�) values summarized in Table 2. The solid gray line denotes �0,0.05 and the dotted gray line denotes �min.

5 DISCUSSION

We have introduced a comprehensive and decision-analytic approach for Bayesian linear variable selection, which is designed to
advance the state-of-the-art in exposure science. By representing variable selection as a decision problem, we are able to identify
joint and optimal subsets of explanatory variables. The decision problem balances predictive accuracy with model complexity
through a penalized loss function, and uniquely incorporates model parameters in the complexity penalty to improve selection
and estimation capabilities. Out-of-sample predictive evaluations are conducted for each linear subset of variables, which inherit
a posterior predictive distribution from the underlying Bayesian regression model. Using this out-of-sample predictive uncer-
tainty quantification, we identify not only the best subset for prediction, but also those subsets that are nearly optimal with some
nonnegligible probability. The collection of these acceptable models offers insights into the covariates needed—which and how
many—for sufficiently accurate prediction. Comparisons on simulated datasets demonstrate the excellent variable selection,
estimation, and prediction capabilities of the proposed approach.
Using population data from North Carolina, our analysis brings new understanding to the cumulative and interactive impact

of social and environmental stressors on the educational growth of children as measured by their 4th grade end-of-grade exam
scores in reading and mathematics. The selected variables span a broad temporal spectrum, including pre- and post-natal and
throughout the life of the child. This more complete predictive picture of child educational outcomes highlights the critical
roles of demographics and other information at birth, social stressors, environmental exposures, and key social-environmental
interactions.
The next stage in our methodological development is to extend the decision analysis selection approach for (i) all pairwise

interactions and (ii) nonlinear models. While our focus is restricted to interactions between social stressors and environmen-
tal exposures, other analyses may require consideration of the complete collection of pairwise interactions.56,57 The proposed
model-based penalization strategy (8) offers a path forward and welcomes hierarchical or interaction-sparsity penalties58—
as well as the accompanying estimation algorithms—into our decision analysis framework. For the nonlinear case, both the
Bayesian linear model (1)-(2) and the formulation of the decision problem (4) will require modifications to incorporate nonlin-
earity. In particular, the abundance of nonlinear models demands careful consideration of the appropriate model specification,
as well as the ability to evaluate the out-of-sample predictive capability of each nonlinear model efficiently. The decision
analysis framework—in conjunction with the proposed fast out-of-sample approximation algorithms and accompanying mech-
anisms to elicit acceptable models—builds upon both Bayesian models and non-Bayesian penalized regression techniques, and
consequently provides a promising path to achieve these goals.
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DATA ACCESSIBILITY

The dataset16 (see Appendix) cannot be released due to privacy protections. However, access to the dataset can occur through
establishing affiliation with the Children’s Environmental Health Initiative (contact cehi@nd.edu).
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n = 10,000, p = 100,SNR = 0.5
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00
TNR 1.00 0.99 0.86 1.00 1.00 0.99

n = 10,000, p = 100,SNR = 3
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00
TNR 1.00 0.99 1.00 1.00 1.00 0.99

n = 1,000, p = 100,SNR = 0.5
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.90 0.92 0.95 0.77 0.81 0.89
TNR 0.99 0.96 0.86 1.00 1.00 0.99

n = 1,000, p = 100,SNR = 3
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00
TNR 1.00 0.98 0.86 1.00 1.00 0.99

n = 200, p = 500,SNR = 0.5
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.42 0.50 0.54 0.06 0.24 0.30
TNR 0.99 0.98 0.97 1.00 1.00 1.00

n = 200, p = 500,SNR = 3
adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.93 0.85 0.93 0.67 0.77 0.79
TNR 0.98 0.99 0.97 1.00 1.00 1.00

TABLE 1 True positive rates (TPR) and true negative rates (TNR) for synthetic data.
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EOG Reading Scores
Margin �min(�) Variable Name

2.76% of �2

(Intercept)∗+

Temp_T2∗+

mEdu:College∗+

mRace:NH Black∗+

EconDisadv∗+

0.4% of �2

PM25_T1∗+

mAge∗+

mEdu:HS∗+

Male∗+

NDI_test∗+

0.005% of �2

Temp_T3∗+

PM25_chronic
BWTpct+

WeeksGest+

NotMarried+

PTB+

Smoker
Blood_lead+

PM25:chronic x RI_test

� = 0 mRace:Hispanic
RI_test

EOG Math Scores
Margin �min(�) Variable Name

2.6% of �2
(Intercept)∗+

mEdu:College∗+

mRace:NH Black∗+

EconDisadv∗+

0.307% of �2

Temp_T2∗+

Temp_T3∗+

PM25_T1∗+

BWTpct∗+

mEdu:HS∗+

mRace:Hispanic∗+

NotMarried+

PM25:chronic x RI_test∗+

0.013% of �2

PM25_T3+

mAge+

PM25:chronic
WeeksGest+

Smoker+

Blood_lead+

NDI_test

� = 0
PTB
RI_birth
Blood_lead x NDI_birth

TABLE 2 Variables selected (in order and incrementally) for EOG Reading (left) and Math (right) scores. The margin �min(�)
expresses the difference in predictive MSE between the best model �min and the noted subset of variables (in addition to the
preceding variables). As the margin decreases to zero, more variables are required to achieve optimal predictive performance.
Variables selected by adaptive lasso (∗) or credible intervals that exclude zero (+) are also denoted. The indicated groupings of
�min(�) are marked in Figure 3.

APPENDIX

A ADDITIONAL DETAILS ON THE DATA

The common restrictions are the following: singletons only (no plural births); no congenital anomalies; maternal age is 15-44;
birth weight is at least 400g; gestational age is 24-42 weeks; mother’s race/ethnicity is non-HispanicWhite, non-Hispanic Black,
or Hispanic; birth order is 1-4. One acute PM2.5 outlier (50% larger than all other values) was removed.
We estimated PM2.5 exposures during pregnancy using ambient monitoring data from the nearest PM2.5 monitor within 30km

from amother’s residence at time of the child’s birth. Air pollution exposure during pregnancywas calculated based on residence,
birth date, and length of gestation. Specifically, the time period of exposure for each birth was calculated using the date of birth
and the weeks of gestation at delivery, as recorded in the NCDBR. Using 24-hour average ambient PM2.5 concentrations, we
calculated average exposure for the first (1-13 weeks), second (14-26 weeks weeks), and third (27 weeks-birth) trimester.
We estimated chronic pre-test PM2.5 exposure using downscaler-reported PM2.5 concentrations at the census tract level for

the census tract in which the child resided at time of EOG testing. Chronic pre-test PM2.5 exposure was estimated based on the
mean 24-hour average PM2.5 concentration during the 12 months prior to the test date. The exact test date is not recorded in the
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EOG dataset, but the test month (May or June) is available. Thus, a mean of 24-hour average PM2.5 concentration was generated
for the 12 months prior to the first of May or June for each year of EOG data.
We estimated acute pre-test PM2.5 exposure using downscaler-reported PM2.5 concentrations at the census tract level for the

census tract in which the child resided at time of testing. Acute pre-test PM2.5 exposure was estimated based on the daily 24-
hour average PM2.5 concentration during the 30 days prior to the test date. Because only the test month is recorded in the EOG
dataset, the acute exposure estimate is based on the mean 24-hour average PM2.5 concentration in the 30 days prior to the first
of May or first of June for each year of EOG data.
Since the EOG testing dataset spans multiple years (2010-2012), the reading and math scores were standardized within each

year prior to analysis.
Economically disadvantaged students are indicated by participation in the free/reduced price lunch program (binary variable,

1 = participation in the program).



22 Kowal ET AL

 

Air quality during gestation, life of the child, and at time of testing 

PM25_T1 PM2.5 24 hour – Average of gestation weeks 1-13 (trimester 1) – ugm3 

PM25_T2 PM2.5 24 hour – Average of gestation weeks 14-26 (trimester 2) – ugm3 

PM25_T3 PM2.5 24 hour – Average of gestation weeks 27-delivery (trimester 3) – ugm3 

Temp_T1 Temperature – Average of gestation weeks 1-13 (trimester 1) – Temperature 

Temp_T2 Temperature – Average of gestation weeks 14-26 (trimester 2) – Temperature 

Temp_T3 Temperature – Average of gestation weeks 27-delivery (trimester 3) – Temperature 

PM25_chronic PM2.5 Mean of 1 year prior to June 1 of the year of the EOG test 

PM25_acute PM2.5 Mean of 30 days prior to May 1 of the year of the EOG test 

Birth information 

BWTpct Birthweight Percentile (based on clinical estimate of gestation)              

WeeksGest Weeks Gestation, Clinical estimate 

mEdu Mother's Education Group at time of birth (NoHS = No high school diploma, HS = High school diploma, College = College diploma) 

mRace Mother's Race/Ethnicity Group (White = White, NH Black = Non-Hispanic Black, Hispanic = Hispanic) 

mAge Mother's Age at time of birth 

Male Male Infant? (1 = Yes)                                

NotMarried Not Married at time of birth? (1 = Yes)                      

Smoker Mother Smoked? (1 = Yes)                     

PTB Pre-Term Birth (<37 wks, Clinical)? (1 = Yes) 

Education / EOG test information 

EOG_Reading Reading scale score for chronologically first EOG test taken (4th grade); centered and scaled by year (2010, 2011, 2012) 

EOG_Math Math scale score for chronologically first EOG test taken (4th grade); centered and scaled by year (2010, 2011, 2012) 

Blood lead level information 

Blood_lead Blood Lead Level (micrograms per deciliter); maximum value if there are multiple tests 

Social / Economic factors 

NDI_birth Neighborhood Deprivation Index, at Birth 

NDI_test Neighborhood Deprivation Index, at time of EOG test 

RI_birth Residential Isolation for non-Hispanic Black, at Birth 

RI_test Residential Isolation for non-Hispanic Black, at time of EOG Test 

EconDisadv  Participation in the free/reduced price lunch program (1 = Yes) 
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FIGURE B.1Root mean squared errors (boxplots) for �∗ with median subset sizes (annotations) for high (top) and low (bottom)
SNR with varying n, p. The proposed out-of-sample decision analytic approach provides highly competitive point estimates
with fewer covariates than competing methods, including large improvements over the full Bayesian model and frequentist
alternatives. Including the intercept, the true model size is 11.
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FIGURE B.2 Using a Laplace prior for �: root mean squared errors (boxplots) for y∗i = x
′
i�
∗ with median subset sizes (annota-

tions) for high (top) and low (bottom) SNRwith varying n, p. The decision analytic approach cannot overcome the shortcomings
of the Bayesian lasso prior, but nonetheless maintains large advantages relative to the posterior mean in most cases. Results (not
shown) for estimation of �∗ are similar.
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